22 research outputs found

    Determinants of enhanced vulnerability to coronavirus disease 2019 in UK patients with cancer: a European study

    Get PDF
    Despite high contagiousness and rapid spread, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to heterogeneous outcomes across affected nations. Within Europe (EU), the United Kingdom (UK) is the most severely affected country, with a death toll in excess of 100,000 as of January 2021. We aimed to compare the national impact of coronavirus disease 2019 (COVID-19) on the risk of death in UK patients with cancer versus those in continental EU. Methods: We performed a retrospective analysis of the OnCovid study database, a European registry of patients with cancer consecutively diagnosed with COVID-19 in 27 centres from 27th February to 10th September 2020. We analysed case fatality rates and risk of death at 30 days and 6 months stratified by region of origin (UK versus EU). We compared patient characteristics at baseline including oncological and COVID-19-specific therapy across UK and EU cohorts and evaluated the association of these factors with the risk of adverse outcomes in multivariable Cox regression models. Findings: Compared with EU (n = 924), UK patients (n = 468) were characterised by higher case fatality rates (40.38% versus 26.5%, p < 0.0001) and higher risk of death at 30 days (hazard ratio [HR], 1.64 [95% confidence interval {CI}, 1.36-1.99]) and 6 months after COVID-19 diagnosis (47.64% versus 33.33%; p < 0.0001; HR, 1.59 [95% CI, 1.33-1.88]). UK patients were more often men, were of older age and have more comorbidities than EU counterparts (p < 0.01). Receipt of anticancer therapy was lower in UK than in EU patients (p < 0.001). Despite equal proportions of complicated COVID-19, rates of intensive care admission and use of mechanical ventilation, UK patients with cancer were less likely to receive anti-COVID-19 therapies including corticosteroids, antivirals and interleukin-6 antagonists (p < 0.0001). Multivariable analyses adjusted for imbalanced prognostic factors confirmed the UK cohort to be characterised by worse risk of death at 30 days and 6 months, independent of the patient's age, gender, tumour stage and status; number of comorbidities; COVID-19 severity and receipt of anticancer and anti-COVID-19 therapy. Rates of permanent cessation of anticancer therapy after COVID-19 were similar in the UK and EU cohorts. Interpretation: UK patients with cancer have been more severely impacted by the unfolding of the COVID-19 pandemic despite societal risk mitigation factors and rapid deferral of anticancer therapy. The increased frailty of UK patients with cancer highlights high-risk groups that should be prioritised for anti-SARS-CoV-2 vaccination. Continued evaluation of long-term outcomes is warranted

    Smoking status during first-line immunotherapy and chemotherapy in NSCLC patients: A case–control matched analysis from a large multicenter study

    Get PDF
    Background: Improved outcome in tobacco smoking patients with non-small cell lung cancer (NSCLC) following immunotherapy has previously been reported. However, little is known regarding this association during first-line immunotherapy in patients with high PD-L1 expression. In this study we compared clinical outcomes according to the smoking status of two large multicenter cohorts. Methods: We compared clinical outcomes according to the smoking status (never smokers vs. current/former smokers) of two retrospective multicenter cohorts of metastatic NSCLC patients, treated with first-line pembrolizumab and platinum-based chemotherapy. Results: A total of 962 NSCLC patients with PD-L1 expression ≥50% who received first-line pembrolizumab and 462 NSCLC patients who received first-line platinum-based chemotherapy were included in the study. Never smokers were confirmed to have a significantly higher risk of disease progression (hazard ratio [HR] = 1.49 [95% CI: 1.15–1.92], p = 0.0022) and death (HR = 1.38 [95% CI: 1.02–1.87], p = 0.0348) within the pembrolizumab cohort. On the contrary, a nonsignificant trend towards a reduced risk of disease progression (HR = 0.74 [95% CI: 0.52–1.05], p = 0.1003) and death (HR = 0.67 [95% CI: 0.45–1.01], p = 0.0593) were reported for never smokers within the chemotherapy cohort. After a random case–control matching, 424 patients from both cohorts were paired. Within the matched pembrolizumab cohort, never smokers had a significantly shorter progression-free survival (PFS) (HR = 1.68 [95% CI: 1.17–2.40], p = 0.0045) and a nonsignificant trend towards a shortened overall survival (OS) (HR = 1.32 [95% CI: 0.84–2.07], p = 0.2205). On the contrary, never smokers had a significantly longer PFS (HR = 0.68 [95% CI: 0.49–0.95], p = 0.0255) and OS (HR = 0.66 [95% CI: 0.45–0.97], p = 0,0356) compared to current/former smoker patients within the matched chemotherapy cohort. On pooled multivariable analysis, the interaction term between smoking status and treatment modality was concordantly statistically significant with respect to ORR (p = 0.0074), PFS (p = 0.0001) and OS (p = 0.0020), confirming the significantly different impact of smoking status across the two cohorts. Conclusions: Among metastatic NSCLC patients with PD-L1 expression ≥50% receiving first-line pembrolizumab, current/former smokers experienced improved PFS and OS. On the contrary, worse outcomes were reported among current/former smokers receiving first-line chemotherapy

    Differential prognostic effect of systemic inflammation in patients with non-small cell lung cancer treated with immunotherapy or chemotherapy: A post hoc analysis of the phase 3 OAK trial

    No full text
    Background: A proinflammatory diathesis, as measured by the neutrophil to lymphocyte ratio (NLR), heralds an adverse disease course for non-small cell lung cancer (NSCLC). Methods: This post hoc analysis used data from the phase 3 OAK trial (NCT02008227), which randomized previously treated patients with NSCLC to atezolizumab or docetaxel. The main objective was assessing the differential impact of the pretreatment NLR on overall survival according to the treatment modality. In addition, patients' genomic characteristics were assessed according to their inflammatory status with a circulating free DNA (cfDNA) next-generation sequencing (NGS) analysis. Results: In all, 600 and 575 patients with NLR data were included in the atezolizumab and docetaxel cohorts, respectively, with a median NLR of 4 (interquartile range, 2.6-6.7) for the pooled population. An NLR ≥4 was associated with a positive smoking status (88.6% vs. 78.1%; p &lt; .01), male sex (66.4% vs. 57.6%; p = .01), a worse performance status (71.3% vs. 55.2%; p &lt; .01), a higher number of metastatic sites (63.2% vs. 51.6%; p = .01), squamous histology (32.1% vs. 21.4%; p &lt; .01), and tissue KRAS mutations (30% vs. 18.7%; p = .02) but not with programmed death ligand 1 (PD-L1) expression or the tissue epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) status. A pretreatment NLR ≥4 was more strongly associated with mortality after atezolizumab (adjusted hazard ratio [HR], 1.64; 95% confidence interval [CI], 1.35-2.01) versus docetaxel (HR, 1.32; 95% CI, 1.08-1.60; multivariable [MVA] interaction p = .08). The HR for an increased risk of death for PD-L1-negative/NLR ≥4 patients (compared with PD-L1-positive/NLR &lt;4 patients) was significantly higher in the atezolizumab cohort (MVA interaction p = .01). The exclusion of EGFR/ALK-positive patients further increased the prognostic ability of the baseline NLR in favor of atezolizumab (MVA interaction p = .02). Pretreatment cfDNA data from NGS showed that patients with a high blood tumor mutation burden (cutoff, 16 mut/Mb) had a higher median NLR (4.6 vs. 3.7; p = .01). After adjustments for multiple comparisons, none of the selected variants of interest (EGFR, KRAS, TP53, KEAP1, STK11, SMARCA4, ARID1A, and targeted DNA damage response and repair genes) were significantly associated with the NLR. Conclusions: A low baseline NLR identified patients with NSCLC who derived a greater survival benefit from atezolizumab in comparison with those identified in the docetaxel cohort. The NLR could complement PD-L1 expression in tailoring treatment in this setting.</p

    Association of Machine Learning-Based Assessment of Tumor-Infiltrating Lymphocytes on Standard Histologic Images With Outcomes of Immunotherapy in Patients With NSCLC

    No full text
    Importance: Currently, predictive biomarkers for response to immune checkpoint inhibitor (ICI) therapy in lung cancer are limited. Identifying such biomarkers would be useful to refine patient selection and guide precision therapy. Objective: To develop a machine-learning (ML)-based tumor-infiltrating lymphocytes (TILs) scoring approach, and to evaluate TIL association with clinical outcomes in patients with advanced non-small cell lung cancer (NSCLC). Design, Setting, and Participants: This multicenter retrospective discovery-validation cohort study included 685 ICI-treated patients with NSCLC with median follow-up of 38.1 and 43.3 months for the discovery (n = 446) and validation (n = 239) cohorts, respectively. Patients were treated between February 2014 and September 2021. We developed an ML automated method to count tumor, stroma, and TIL cells in whole-slide hematoxylin-eosin-stained images of NSCLC tumors. Tumor mutational burden (TMB) and programmed death ligand-1 (PD-L1) expression were assessed separately, and clinical response to ICI therapy was determined by medical record review. Data analysis was performed from June 2021 to April 2022. Exposures: All patients received anti-PD-(L)1 monotherapy. Main Outcomes and Measures: Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were determined by blinded medical record review. The area under curve (AUC) of TIL levels, TMB, and PD-L1 in predicting ICI response were calculated using ORR. Results: Overall, there were 248 (56%) women in the discovery cohort and 97 (41%) in the validation cohort. In a multivariable analysis, high TIL level (≥250 cells/mm 2) was independently associated with ICI response in both the discovery (PFS: HR, 0.71; P =.006; OS: HR, 0.74; P =.03) and validation (PFS: HR = 0.80; P =.01; OS: HR = 0.75; P =.001) cohorts. Survival benefit was seen in both first- and subsequent-line ICI treatments in patients with NSCLC. In the discovery cohort, the combined models of TILs/PD-L1 or TMB/PD-L1 had additional specificity in differentiating ICI responders compared with PD-L1 alone. In the PD-L1 negative (<1%) subgroup, TIL levels had superior classification accuracy for ICI response (AUC = 0.77) compared with TMB (AUC = 0.65). Conclusions and Relevance: In these cohorts, TIL levels were robustly and independently associated with response to ICI treatment. Patient TIL assessment is relatively easily incorporated into the workflow of pathology laboratories at minimal additional cost, and may enhance precision therapy.
    corecore