6 research outputs found

    Cosmology and detection of the Dark Axion Portal

    Get PDF
    RESUMEN: El Fotón Oscuro y el axión son partículas ligeras y candidatos populares como Materia Oscura, por ser extensiones simples al Modelo Estándar. Cada una de ellas ha sido buscada activamente a través de sus acoplamientos llamados portal vector y portal axión. El objetivo principal de esta tesis es presentar un modelo (basado en el trabajo de Kunio Kaneta, Hye Sung Lee y Seokhoon Yun de 2017) que introduce un nuevo portal conectando el Fotón Oscuro y el axión, junto con su fenomenología, implicaciones para la cosmología y detectabilidad. Esto se hará realizando predicciones teóricas acerca de las propiedades del axión y del Fotón Oscuro tal que den cuenta de toda la Materia Oscura, siendo a su vez detectables en experimentos de búsqueda directa. La detectabilidad de los Fotones Oscuros será probada específicamente para la LBC, versión de prueba del experimento DAMIC-M, a través de simulaciones del ruido de fondo y cálculos de la señal esperada de los Fotones Oscuros en el detector de la LBC.ABSTRACT: The Dark Photon and the axion are light particles, popular candidates for Dark Matter for being simple extensions to the Standard Model. Each of them has been actively searched for through the couplings called the vector portal and the axion portal. The focal aim of this thesis is to present a model (based on the work of Kunio Kaneta, Hye-Sung Lee, and Seokhoon Yun in 2017) which introduces a new portal connecting the Dark Photon and the axion, together with its phenomenology, implications for cosmology and detectability. This will be done making theoretical predictions about the properties of the axion and Dark Photon in order for them to account for all Dark Matter while being detectable in direct search experiments. The detectability of Dark Photons will be proven in particular for the LBC, proof-of-concept for DAMIC-M experiment, through simulations of the background noise and calculations of the expected Dark Photon signal in the LBC detector.Máster en Física de Partículas y del Cosmo

    Búsqueda de materia oscura en experimentos de búsqueda directa DAMIC

    Get PDF
    ABSTRACT: The framework of this work is the DAMIC-M Experiment and its proof-of-concept LBC (DAMIC-M stands for DArk MAtter in CCDs, while LBC for Low-Background Chamber). The purpose of DAMIC-M is search for Dark Matter (DM) particles by detecting nuclear or/and electrons recoils induced by light mass Dark Matter. A crucial part of this goal is a detailed knowledge of the backgrounds noise and particle identification. The understanding of this has been the main aim of work in this thesis, which can be summarized as: i) validation of DAMICG4, a tool used to simulate the interactions of particles in matter based on Monte Carlo simulations; ii) validation of psimulCCDimg, a software used to mimic the response of the DAMIC-M detector; iii) create a data base of simulated particles of different nature (mainly alpha, muons and electrons) which are used in other two Works focused on machine learning algorithm.RESUMEN: Este trabajo está enmarcado en el Experimento DAMIC-M y su prototipo LBC (DAMIC-M es un acrónimo para DArk MAtter in CCDs at Modane, mientras que LBC son las siglas para Low Background Chamber). El propósito de DAMIC-M es la búsqueda de partículas de Materia Oscura mediante la detección de los retrocesos nucleares y/o de electrones inducidos por Materia Oscura ligera. Una parte crucial para este objetivo es un conocimiento detallado de los ruidos de fondo y la identificación de partículas. La comprensión de estos ha sido el principal objetivo de este trabajo, el cual puede resumirse en: i) validación de DAMICG4, una herramienta utilizada para la simulación de las interacciones entre partículas y materia mediante simulaciones Monte Carlo; ii) validación de psimulCCDimg, software utilizado para emular la respuesta del detector de DAMIC-M; iii) creación de una base de datos de partículas simuladas de diferente naturaleza (principalmente alfas, muones y electrones) que será utilizada en otros dos trabajos dedicados al desarrollo de un algoritmo de machine learning.Grado en Físic

    Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection

    Get PDF
    Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of O ( 10     eV ) . In this regime, ionization signals from small-angle Compton scatters of environmental γ rays constitute a significant background. Monte Carlo simulations used to build background models have not been experimentally validated at these low energies. We report a precision measurement of Compton scattering on silicon atomic shell electrons down to 23 eV. A skipper charge-coupled device with single-electron resolution, developed for the DAMIC-M experiment, was exposed to a 241 Am γ -ray source over several months. Features associated with the silicon K-, L 1 -, and L 2 , 3 -shells are clearly identified, and scattering on valence electrons is detected for the first time below 100 eV. We find that the relativistic impulse approximation for Compton scattering, which is implemented in Monte Carlo simulations commonly used by direct detection experiments, does not reproduce the measured spectrum below 0.5 keV. The data are in better agreement with ab initio calculations originally developed for x-ray absorption spectroscopy.The DAMIC-M project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant Agreement No. 788137, and from NSF through Grant No. NSF PHY-1812654. The work at University of Chicago and University of Washington was supported through Grant No. NSF PHY-2110585. This work was supported by the Kavli Institute for Cosmological Physics at the University of Chicago through an endowment from the Kavli Foundation. We also thank the College of Arts and Sciences at UW for contributing the first CCDs to the DAMIC-M project. I. F. C. A. was supported by project PID2019–109829 GB-I00 funded by MCIN/ AEI /10.13039/501100011033. The Centro Atómico Bariloche group is supported by ANPCyT Grant No. PICT-2018-03069. The University of Zürich was supported by the Swiss National Science Foundation. The CCD development work at Lawrence Berkeley National Laboratory Microsystems Lab was supported in part by the Director, Office of Science, of the U.S. Department of Energy under Award No. DE-AC02-05CH11231. We thank Gerald T. Seidler for introducing us to the feff code, and thank Joshua J. Kas, Micah P. Prange, and John J. Rehr for their support with feff. We also thank Christian Sternemann for sharing his NRIXS silicon spectra

    Cosmology and detection of the Dark Axion Portal

    No full text
    Máster en Física de partículas y del Cosmos.[ES] El Fotón Oscuro y el axión son partículas ligeras y candidatos populares como Materia Oscura, por ser extensiones simples al Modelo Estándar. Cada una de ellas ha sido buscada activamente a través de sus acoplamientos llamados portal vector y portal axión. El objetivo principal de esta tesis es presentar un modelo (basado en el trabajo de Kunio Kaneta, Hye Sung Lee y Seokhoon Yun de 2017) que introduce un nuevo portal conectando el Fotón Oscuro y el axión, junto con su fenomenología, implicaciones para la cosmología y detectabilidad. Esto se hará realizando predicciones teóricas acerca de las propiedades del axión y del Fotón Oscuro tal que den cuenta de toda la Materia Oscura, siendo a su vez detectables en experimentos de búsqueda directa. La detectabilidad de los Fotones Oscuros será probada específicamente para la LBC, versión de prueba del experimento DAMIC-M, a través de simulaciones del ruido de fondo y cálculos de la señal esperada de los Fotones Oscuros en el detector de la LBC.[EN] The Dark Photon and the axion are light particles, popular candidates for Dark Matter for being simple extensions to the Standard Model. Each of them has been actively searched for through the couplings called the vector portal and the axion portal. The focal aim of this thesis is to present a model (based on the work of Kunio Kaneta, Hye-Sung Lee, and Seokhoon Yun in 2017) which introduces a new portal connecting the Dark Photon and the axion, together with its phenomenology, implications for cosmology and detectability. This will be done making theoretical predictions about the properties of the axion and Dark Photon in order for them to account for all Dark Matter while being detectable in direct search experiments. The detectability of Dark Photons will be proven in particular for the LBC, proof-of-concept for DAMIC-M experiment, through simulations of the background noise and calculations of the expected Dark Photon signal in the LBC detector.Peer reviewe

    Cosmología y detección del Portal Axión Oscuro

    No full text
    Trabajo fin de Máster defendido en la Facultad de Ciencias de la Universidad de Cantabria, el 23 de julio de 2021 - Curso 2020-2021 - Máster Interuniversitario en Física de Partículas y del Cosmos (UIMP-UC-CSIC)[EN] The Dark Photon and the axion are light particles, popular candidates for Dark Matter for being simple extensions to the Standard Model. Each of them has been actively searched for through the couplings called the vector portal and the axion portal. The focal aim of this thesis is to present a model (based on the work of Kunio Kaneta, Hye-Sung Lee, and Seokhoon Yun in 2017) which introduces a new portal connecting the Dark Photon and the axion, together with its phenomenology, implications for cosmology and detectability. This will be done making theoretical predictions about the properties of the axion and Dark Photon in order for them to account for all Dark Matter while being detectable in direct search experiments. The detectability of Dark Photons will be proven in particular for the LBC, proof-of-concept for DAMIC-M experiment, through simulations of the background noise and calculations of the expected Dark Photon signal in the LBC detector.[ES] El Fotón Oscuro y el axión son partículas ligeras y candidatos populares como Materia Oscura, por ser extensiones simples al Modelo Estándar. Cada una de ellas ha sido buscada actívamente a través de sus acoplamientos llamados portal vector y portal axión. El objetivo principal de esta tesis es presentar un modelo (basado en el trabajo de Kunio Kaneta, Hye- Sung Lee y Seokhoon Yun de 2017) que introduce un nuevo portal conectando el Fotón Oscuro y el axión, junto con su fenomenología, implicaciones para la cosmología y detectabilidad. Esto se hará realizando predicciones teóricas acerca de las propiedades del axión y del Fotón Oscuro tal que den cuenta de toda la Materia Oscura, siendo a su vez detectables en experimentos de búsqueda directa. La detectabilidad de los Fotones Oscuros será probada específicamente para la LBC, versión de prueba del experimento DAMIC-M, a través de simulaciones del ruido de fondo y cálculos de la señal esperada de los Fotones Oscuros en el detector de la LBC.Peer reviewe

    Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection

    No full text
    DAMIC-M Collaboration: et al.Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of O(10 eV). In this regime, ionization signals from small-angle Compton scatters of environmental γ rays constitute a significant background. Monte Carlo simulations used to build background models have not been experimentally validated at these low energies. We report a precision measurement of Compton scattering on silicon atomic shell electrons down to 23 eV. A skipper charge-coupled device with single-electron resolution, developed for the DAMIC-M experiment, was exposed to a 241Am γ-ray source over several months. Features associated with the silicon K-, L1-, and L2,3-shells are clearly identified, and scattering on valence electrons is detected for the first time below 100 eV. We find that the relativistic impulse approximation for Compton scattering, which is implemented in Monte Carlo simulations commonly used by direct detection experiments, does not reproduce the measured spectrum below 0.5 keV. The data are in better agreement with ab initio calculations originally developed for x-ray absorption spectroscopy.The DAMIC-M project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant Agreement No. 788137, and from NSF through Grant No. NSF PHY-1812654. The work at University of Chicago and University of Washington was supported through Grant No. NSF PHY-2110585. This work was supported by the Kavli Institute for Cosmological Physics at the University of Chicago through an endowment from the Kavli Foundation. We also thank the College of Arts and Sciences at UW for contributing the first CCDs to the DAMIC-M project. I.F.C.A. was supported by project PID2019–109829 GB-I00 funded by MCIN/ AEI /10.13039/501100011033. The Centro Atómico Bariloche group is supported by ANPCyT Grant No. PICT-201803069. The University of Zürich was supported by the Swiss National Science Foundation. The CCD development work at Lawrence Berkeley National Laboratory Microsystems Lab was supported in part by the Director, Office of Science, of the U.S. Department of Energy under Award No. DE-AC02-05CH11231.Peer reviewe
    corecore