2,963 research outputs found

    A First-Principles Approach to Insulators in Finite Electric Fields

    Full text link
    We describe a method for computing the response of an insulator to a static, homogeneous electric field. It consists of iteratively minimizing an electric enthalpy functional expressed in terms of occupied Bloch-like states on a uniform grid of k points. The functional has equivalent local minima below a critical field E_c that depends inversely on the density of k points; the disappearance of the minima at E_c signals the onset of Zener breakdown. We illustrate the procedure by computing the piezoelectric and nonlinear dielectric susceptibility tensors of III-V semiconductors.Comment: 4 pages, with 1 postscript figure embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/is_ef/index.htm

    Serre's "formule de masse" in prime degree

    Full text link
    For a local field F with finite residue field of characteristic p, we describe completely the structure of the filtered F_p[G]-module K^*/K^*p in characteristic 0 and $K^+/\wp(K^+) in characteristic p, where K=F(\root{p-1}\of F^*) and G=\Gal(K|F). As an application, we give an elementary proof of Serre's mass formula in degree p. We also determine the compositum C of all degree p separable extensions with solvable galoisian closure over an arbitrary base field, and show that C is K(\root p\of K^*) or K(\wp^{-1}(K)) respectively, in the case of the local field F. Our method allows us to compute the contribution of each character G\to\F_p^* to the degree p mass formula, and, for any given group \Gamma, the contribution of those degree p separable extensions of F whose galoisian closure has group \Gamma.Comment: 36 pages; most of the new material has been moved to the new Section

    Enhancement of piezoelectricity in a mixed ferroelectric

    Full text link
    We use first-principles density-functional total energy and polarization calculations to calculate the piezoelectric tensor at zero temperature for both cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest piezoelectric coefficient for the tetragonal configuration is enhanced by a factor of about three with respect to that of the cubic configuration. This can be attributed to both the larger strain-induced motion of cations relative to anions and higher Born effective charges in the tetragonal case. A normal mode decomposition shows that both cation ordering and local relaxation weaken the ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte

    A Geometric Formulation of Quantum Stress Fields

    Full text link
    We present a derivation of the stress field for an interacting quantum system within the framework of local density functional theory. The formulation is geometric in nature and exploits the relationship between the strain tensor field and Riemannian metric tensor field. Within this formulation, we demonstrate that the stress field is unique up to a single ambiguous parameter. The ambiguity is due to the non-unique dependence of the kinetic energy on the metric tensor. To illustrate this formalism, we compute the pressure field for two phases of solid molecular hydrogen. Furthermore, we demonstrate that qualitative results obtained by interpreting the hydrogen pressure field are not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper supersedes cond-mat/000627

    Density-Polarization Functional Theory of the response of a periodic insulating solid to an electric field.

    Get PDF
    The response of an infinite, periodic, insulating, solid to an infinitesimally small electric field is investigated in the framework of Density Functional Theory. We find that the applied perturbing potential is not a unique functional of the periodic density change~: it depends also on the change in the macroscopic {\em polarization}. Moreover, the dependence of the exchange-correlation energy on polarization induces an exchange-correlation electric field. These effects are exhibited for a model semiconductor. We also show that the scissor-operator technique is an approximate way of bypassing this polarization dependence.Comment: 11 pages, 1 Fig
    • …
    corecore