776 research outputs found

    Roving vehicle motion control Quarterly report, 1 Mar. - 31 May 1967

    Get PDF
    System and subsystem requirements for remote control of roving space vehicle motio

    Roving vehicle motion control Final report

    Get PDF
    Roving vehicle motion control for unmanned planetary and lunar exploratio

    Galois covers of the open p-adic disc

    Full text link
    This paper investigates Galois branched covers of the open pp-adic disc and their reductions to characteristic pp. Using the field of norms functor of Fontaine and Wintenberger, we show that the special fiber of a Galois cover is determined by arithmetic and geometric properties of the generic fiber and its characteristic zero specializations. As applications, we derive a criterion for good reduction in the abelian case, and give an arithmetic reformulation of the local Oort Conjecture concerning the liftability of cyclic covers of germs of curves.Comment: 19 pages; substantial organizational and expository changes; this is the final version corresponding to the official publication in Manuscripta Mathematica; abstract update

    Opinions on rehabilitation care of young adults with transversal upper limb reduction deficiency in their transition to adulthood

    Get PDF
    PURPOSE: Young adults with transversal upper limb reduction deficiency experience limitations regarding education, employment and obtaining a driver's license. Contribution of rehabilitation care within these domains has been reported to be inadequate. This study evaluates the needs and suggestions of participants in rehabilitation care. METHODS: Two online focus groups with young adults and parents met during 4 consecutive days. Health care professionals joined a face-to-face focus group. Data analysis was based on framework analysis. RESULTS: The rehabilitation team was mainly consulted for problems with residual limb or for prostheses. Young adults and their parents were mostly unaware of resources regarding education, job selection or obtaining a driver's license. Professionals stated that these subjects were addressed during periodic appointments. Young adults didn't always attend these appointments due to limited perceived benefit. To improve rehabilitation care, participants suggested methods for providing relevant information, facilitating peer contact and offering dedicated training programs to practice work-related tasks, prepare for job interviews or enhance self-confidence. CONCLUSION: Periodic appointments do not fulfil needs of young adults with transversal upper limb reduction deficiency. To improve care, rehabilitation teams should offer age-relevant information, share peer stories, and create dedicated training programs

    Infusion of donor leukocytes to induce tolerance in organ allograft recipients

    Get PDF
    To further enhance chimerism, 229 primary allograft recipients have received perioperative intravenous infusion of a single dose of 3 to 6 x 108 unmodified donor bone marrow (BM) cells/kg body weight. In addition, 42 patients have been accrued in a concurrent protocol involving multiple (up to three) sequential perioperative infusions of 2 x 108 BM cells/kg/day from day 0-2 posttransplantation (PTx). Organ recipients (n = 133) for whom BM was not available were monitored as controls. The infusion of BM was safe and except for 50 (18%), all study patients have optimal graft function. Of the control patients, allografts in 30 (23%) have been lost during the course of follow-up. The cumulative risk of acute cellular rejection (ACR) was statistically lower in the study patients compared with that of controls. It is interesting that, 62% of BM-augmented heart recipients were free of ACR (Grade ≥ 3A) in the first 6 months PTx compared to controls. The incidence of obliterative bronchiolitis was also statistically lower in study lung recipients (3.8%) compared with the contemporaneously acquired controls (31%). The levels of donor cell chimerism were at least a log higher in the peripheral blood of majority of the study patients compared with that of controls. The incidence of donor-specific hyporeactivity, as determined by one-way mixed leukocyte reaction, was also higher in those BM-augmented liver, kidney, and lung recipients that could be evaluated compared to controls

    Clinical and Experimental Applications of NIR-LED Photobiomodulation

    Get PDF
    This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as “photobiomodulation,” uses light in the far-red to near-infrared region of the spectrum (630–1000 nm) and modulates numerous cellular functions. Positive effects of NIR–light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction

    The branched-chain aminotransferase proteins: Novel redox chaperones for protein disulfide isomerase-implications in Alzheimer's disease

    Get PDF
    Aims: The human branched-chain aminotransferase proteins (hBCATm and hBCATc) are regulated through oxidation and S-nitrosation. However, it remains unknown whether they share common redox characteristics to enzymes such as protein disulfide isomerase (PDI) in terms of regulating cellular repair and protein misfolding. Results: Here, similar to PDI, the hBCAT proteins showed dithiol-disulfide isomerase activity that was mediated through an S-glutathionylated mechanism. Site-directed mutagenesis of the active thiols of the CXXC motif demonstrates that they are fundamental to optimal protein folding. Far Western analysis indicated that both hBCAT proteins can associate with PDI. Co-immunoprecipitation studies demonstrated that hBCATm directly binds to PDI in IMR-32 cells and the human brain. Electron and confocal microscopy validated the expression of PDI in mitochondria (using Mia40 as a mitochondrial control), where both PDI and Mia40 were found to be co-localized with hBCATm. Under conditions of oxidative stress, this interaction is decreased, suggesting that the proposed chaperone role for hBCATm may be perturbed. Moreover, immunohistochemistry studies show that PDI and hBCAT are expressed in the same neuronal and endothelial cells of the vasculature of the human brain, supporting a physiological role for this binding. Innovation: This study identifies a novel redox role for hBCAT and confirms that hBCATm differentially binds to PDI under cellular stress. Conclusion: These studies indicate that hBCAT may play a role in the stress response of the cell as a novel redox chaperone, which, if compromised, may result in protein misfolding, creating aggregates as a key feature in neurodegenerative conditions such as Alzheimer's disease. © 2014 Mary Ann Liebert, Inc

    A Hydrophobic Gate in an Ion Channel: The Closed State of the Nicotinic Acetylcholine Receptor

    Full text link
    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the `Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a three dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height ca. 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united atom force field for the protein instead of an all atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.Comment: Accepted by Physical Biology; includes a supplement and a supplementary mpeg movie can be found at http://sbcb.bioch.ox.ac.uk/oliver/download/Movies/watergate.mp

    Vibrational Spectra of a Mechanosensitive Channel

    Get PDF
    We report the simulated vibrational spectra of a mechanosensitive membrane channel in different gating states. Our results show that while linear absorption is insensitive to structural differences, linear dichroism and sum-frequency generation spectroscopies are sensitive to the orientation of the transmembrane helices, which is changing during the opening process. Linear dichroism cannot distinguish an intermediate structure from the closed structure, but sum-frequency generation can. In addition, we find that two-dimensional infrared spectroscopy can be used to distinguish all three investigated gating states of the mechanosensitive membrane channel.
    corecore