9 research outputs found

    Preconditioned Chebyshev BiCG for parameterized linear systems

    Full text link
    We consider the problem of approximating the solution to A(ÎŒ)x(ÎŒ)=bA(\mu) x(\mu) = b for many different values of the parameter ÎŒ\mu. Here we assume A(ÎŒ)A(\mu) is large, sparse, and nonsingular with a nonlinear dependence on ÎŒ\mu. Our method is based on a companion linearization derived from an accurate Chebyshev interpolation of A(ÎŒ)A(\mu) on the interval [−a,a][-a,a], a∈Ra \in \mathbb{R}. The solution to the linearization is approximated in a preconditioned BiCG setting for shifted systems, where the Krylov basis matrix is formed once. This process leads to a short-term recurrence method, where one execution of the algorithm produces the approximation to x(ÎŒ)x(\mu) for many different values of the parameter Ό∈[−a,a]\mu \in [-a,a] simultaneously. In particular, this work proposes one algorithm which applies a shift-and-invert preconditioner exactly as well as an algorithm which applies the preconditioner inexactly. The competitiveness of the algorithms are illustrated with large-scale problems arising from a finite element discretization of a Helmholtz equation with parameterized material coefficient. The software used in the simulations is publicly available online, and thus all our experiments are reproducible

    Sparse grid based Chebyshev HOPGD for parameterized linear systems

    Full text link
    We consider approximating solutions to parameterized linear systems of the form A(ÎŒ1,ÎŒ2)x(ÎŒ1,ÎŒ2)=bA(\mu_1,\mu_2) x(\mu_1,\mu_2) = b, where (ÎŒ1,ÎŒ2)∈R2(\mu_1, \mu_2) \in \mathbb{R}^2. Here the matrix A(ÎŒ1,ÎŒ2)∈Rn×nA(\mu_1,\mu_2) \in \mathbb{R}^{n \times n} is nonsingular, large, and sparse and depends nonlinearly on the parameters ÎŒ1\mu_1 and ÎŒ2\mu_2. Specifically, the system arises from a discretization of a partial differential equation and x(ÎŒ1,ÎŒ2)∈Rnx(\mu_1,\mu_2) \in \mathbb{R}^n, b∈Rnb \in \mathbb{R}^n. This work combines companion linearization with the Krylov subspace method preconditioned bi-conjugate gradient (BiCG) and a decomposition of a tensor matrix of precomputed solutions, called snapshots. As a result, a reduced order model of x(ÎŒ1,ÎŒ2)x(\mu_1,\mu_2) is constructed, and this model can be evaluated in a cheap way for many values of the parameters. The decomposition is performed efficiently using the sparse grid based higher-order proper generalized decomposition (HOPGD), and the snapshots are generated as one variable functions of ÎŒ1\mu_1 or of ÎŒ2\mu_2. Tensor decompositions performed on a set of snapshots can fail to reach a certain level of accuracy, and it is not possible to know a priori if the decomposition will be successful. This method offers a way to generate a new set of solutions on the same parameter space at little additional cost. An interpolation of the model is used to produce approximations on the entire parameter space, and this method can be used to solve a parameter estimation problem. Numerical examples of a parameterized Helmholtz equation show the competitiveness of our approach. The simulations are reproducible, and the software is available online

    Numerical methods for parameterized linear systems

    No full text
    Solving linear systems of equations is a fundamental problem in engineering. Moreover, applications involving the solution to linear systems arise in the social sciences, business, and economics. Specifically, the research conducted in this dissertation explores solutions to linear systems where the system matrix depends nonlinearly on a parameter. The parameter can be a scalar or a vector, and a change in the parameter results in a change in the solution. Such a setting arises in the study of partial differential equations and time-delay systems, and we are interested in obtaining solutions corresponding to many values of the parameter simultaneously. The methods developed in this thesis can also be used to solve parameter estimation problems. Furthermore, software has been developed and is available online.  This thesis consists of four papers and presents both algorithms and theoretical analysis. In Paper A, a linearization based on an infinite Taylor series expansion is considered. Specifically, the linearized system is a shifted parameterized system, and the parameter is a scalar. The GMRES method is used to solve the systems corresponding to many values of the parameter, and only one Krylov subspace basis matrix is required. Convergence analysis is based on solutions to a nonlinear eigenvalue problem and the magnitude of the parameter. Notably, the algorithm is carried out in a finite number of computations.  The approach in Paper B is based on a preconditioned linearized system solved using the inexact GMRES method. In this setting, the linearization incorporates all terms in an infinite Taylor series expansion, and the preconditioner is applied approximately using iterative methods. Solutions corresponding to many values of the scalar parameter are generated from one subspace, and this is done in a finite number of linear algebra operations. Theoretical analysis, based on the error in the application of the preconditioner and the magnitude of the parameter, leads to a bound on the residual.  Paper C proposes a short recurrence Krylov subspace method for solving linear systems that depend on a scalar parameter. In particular, a Chebyshev approximation is used to construct a linearization, and the linearized system is solved in a Bi-CG setting. Additionally, shift-and-invert preconditioning leads to fast convergence of the Krylov method for many different values of the parameter. An inexact variant of the method is also derived and analyzed.  In Paper D, a reduced order model is constructed from snapshots to solve parameterized linear systems. Specifically, the parameter is a vector of dimension 2, and the sampling is performed on a sparse grid using the method proposed in Paper C. A tensor decomposition is utilized to build the model. Approaches of this kind are not always successful, and it is not known a priori if a decomposition will converge on a given set of snapshots. This work offers a novel way to generate a new set of snapshots in the same parameter space, to be used if the decomposition does not converge, with little extra computation. Att lösa linjÀra ekvationssystem Àr ett grundlÀggande tekniskt problem. Dessutom uppstÄr tillÀmpningar som involverar lösningen av linjÀra system inom samhÀllsvetenskap och ekonomi. Specifikt utforskar denna avhandling lösningar till linjÀra system dÀr systemmatrisen beror olinjÀrt pÄ en parameter. Parametern kan vara en skalÀr eller en vektor, och en förÀndring i parametern resulterar i en förÀndring i lösningen. En sÄdant scenario uppstÄr vid studiet av partiella differentialekvationer och tidsfördröjningssystem, och vi Àr intresserade av att erhÄlla lösningar som motsvarar mÄnga vÀrden pÄ parametern samtidigt. De metoder som utvecklats i denna avhandling kan ocksÄ anvÀndas för att lösa problem med parameteruppskattning. Ytterligare har programvara utvecklats och Àr tillgÀnglig online. Denna avhandling bestÄr av fyra artiklar och presenterar bÄde algoritmer och teoretisk analys. I artikel A behandlas en linjÀrisering baserad pÄ en oÀndlig Taylor-serieexpansion. Specifikt Àr det linjÀriserade systemet ett skiftat parametriserat system, och parametern Àr en skalÀr. Systemet löses med GMRES-metoden, och endast en Krylov-basmatris krÀvs. Konvergensanalys baseras pÄ lösningar till ett olinjÀrt egenvÀrdesproblem och parameterns storlek. Noterbart Àr att algoritmen utförs i ett Àndligt antal berÀkningar. TillvÀgagÄngssÀttet i artikel B Àr baserat pÄ ett förkonditionerat linjÀriserat system löst med den inexakta GMRES-metoden. I den hÀr kontexten innehÄller linjÀriseringen alla termer i en oÀndlig Taylor-serieexpansion, och förkonditioneringen appliceras pÄ ett approximativt sÀtt med iterativa metoder. Lösningar som motsvarar mÄnga vÀrden pÄ den skalÀra parametern genereras frÄn ett delrum, och detta görs i ett Àndligt antal linjÀra algebraoperationer. Teoretisk analys, baserad pÄ felet i appliceringen av förkonditioneraren och storleken pÄ parametern, leder till en övre begrÀnsning pÄ residualens storlek. Artikel C föreslÄr en Krylovbaserad rekursionsmetod med fÄ termer för att lösa linjÀra system som Àr beroende av en skalÀr parameter. Specifikt anvÀnds en Chebyshev-approximation för att konstruera en linjÀrisering, och det linjÀriserade systemet löses med den bikonjugerade gradient-metoden. Dessutom leder förkonditionering med skifte och invertering till snabb konvergens av Krylov-metoden för mÄnga olika vÀrden pÄ parametern. En inexakt variant av metoden hÀrleds och analyseras ocksÄ. I artikel D konstrueras en reducerad ordningsmodell frÄn sampel av modellen för att lösa parametriserade linjÀra system. Specifikt Àr parametern en vektor med dimensionen 2, och samplingen utförs pÄ ett glest rutnÀt med den metod som föreslÄs i artikel C. En tensorfaktorisering anvÀnds för att bygga modellen. TillvÀgagÄngssÀtt av denna typ Àr inte alltid framgÄngsrika, och det Àr inte kÀnt pÄ förhand om en tensorfaktorisering kommer att konvergera för en given uppsÀttning av sampel. Detta arbete presenterar ett nytt sÀtt att generera en ny uppsÀttning sampel i samma parameterrum till en lÄg extra kostnad. De nya lösningar kan anvÀndas om tensorfaktoriseringen misslyckas. QC 2024-04-08</p

    Numerical methods for parameterized linear systems

    No full text
    Solving linear systems of equations is a fundamental problem in engineering. Moreover, applications involving the solution to linear systems arise in the social sciences, business, and economics. Specifically, the research conducted in this dissertation explores solutions to linear systems where the system matrix depends nonlinearly on a parameter. The parameter can be a scalar or a vector, and a change in the parameter results in a change in the solution. Such a setting arises in the study of partial differential equations and time-delay systems, and we are interested in obtaining solutions corresponding to many values of the parameter simultaneously. The methods developed in this thesis can also be used to solve parameter estimation problems. Furthermore, software has been developed and is available online.  This thesis consists of four papers and presents both algorithms and theoretical analysis. In Paper A, a linearization based on an infinite Taylor series expansion is considered. Specifically, the linearized system is a shifted parameterized system, and the parameter is a scalar. The GMRES method is used to solve the systems corresponding to many values of the parameter, and only one Krylov subspace basis matrix is required. Convergence analysis is based on solutions to a nonlinear eigenvalue problem and the magnitude of the parameter. Notably, the algorithm is carried out in a finite number of computations.  The approach in Paper B is based on a preconditioned linearized system solved using the inexact GMRES method. In this setting, the linearization incorporates all terms in an infinite Taylor series expansion, and the preconditioner is applied approximately using iterative methods. Solutions corresponding to many values of the scalar parameter are generated from one subspace, and this is done in a finite number of linear algebra operations. Theoretical analysis, based on the error in the application of the preconditioner and the magnitude of the parameter, leads to a bound on the residual.  Paper C proposes a short recurrence Krylov subspace method for solving linear systems that depend on a scalar parameter. In particular, a Chebyshev approximation is used to construct a linearization, and the linearized system is solved in a Bi-CG setting. Additionally, shift-and-invert preconditioning leads to fast convergence of the Krylov method for many different values of the parameter. An inexact variant of the method is also derived and analyzed.  In Paper D, a reduced order model is constructed from snapshots to solve parameterized linear systems. Specifically, the parameter is a vector of dimension 2, and the sampling is performed on a sparse grid using the method proposed in Paper C. A tensor decomposition is utilized to build the model. Approaches of this kind are not always successful, and it is not known a priori if a decomposition will converge on a given set of snapshots. This work offers a novel way to generate a new set of snapshots in the same parameter space, to be used if the decomposition does not converge, with little extra computation. Att lösa linjÀra ekvationssystem Àr ett grundlÀggande tekniskt problem. Dessutom uppstÄr tillÀmpningar som involverar lösningen av linjÀra system inom samhÀllsvetenskap och ekonomi. Specifikt utforskar denna avhandling lösningar till linjÀra system dÀr systemmatrisen beror olinjÀrt pÄ en parameter. Parametern kan vara en skalÀr eller en vektor, och en förÀndring i parametern resulterar i en förÀndring i lösningen. En sÄdant scenario uppstÄr vid studiet av partiella differentialekvationer och tidsfördröjningssystem, och vi Àr intresserade av att erhÄlla lösningar som motsvarar mÄnga vÀrden pÄ parametern samtidigt. De metoder som utvecklats i denna avhandling kan ocksÄ anvÀndas för att lösa problem med parameteruppskattning. Ytterligare har programvara utvecklats och Àr tillgÀnglig online. Denna avhandling bestÄr av fyra artiklar och presenterar bÄde algoritmer och teoretisk analys. I artikel A behandlas en linjÀrisering baserad pÄ en oÀndlig Taylor-serieexpansion. Specifikt Àr det linjÀriserade systemet ett skiftat parametriserat system, och parametern Àr en skalÀr. Systemet löses med GMRES-metoden, och endast en Krylov-basmatris krÀvs. Konvergensanalys baseras pÄ lösningar till ett olinjÀrt egenvÀrdesproblem och parameterns storlek. Noterbart Àr att algoritmen utförs i ett Àndligt antal berÀkningar. TillvÀgagÄngssÀttet i artikel B Àr baserat pÄ ett förkonditionerat linjÀriserat system löst med den inexakta GMRES-metoden. I den hÀr kontexten innehÄller linjÀriseringen alla termer i en oÀndlig Taylor-serieexpansion, och förkonditioneringen appliceras pÄ ett approximativt sÀtt med iterativa metoder. Lösningar som motsvarar mÄnga vÀrden pÄ den skalÀra parametern genereras frÄn ett delrum, och detta görs i ett Àndligt antal linjÀra algebraoperationer. Teoretisk analys, baserad pÄ felet i appliceringen av förkonditioneraren och storleken pÄ parametern, leder till en övre begrÀnsning pÄ residualens storlek. Artikel C föreslÄr en Krylovbaserad rekursionsmetod med fÄ termer för att lösa linjÀra system som Àr beroende av en skalÀr parameter. Specifikt anvÀnds en Chebyshev-approximation för att konstruera en linjÀrisering, och det linjÀriserade systemet löses med den bikonjugerade gradient-metoden. Dessutom leder förkonditionering med skifte och invertering till snabb konvergens av Krylov-metoden för mÄnga olika vÀrden pÄ parametern. En inexakt variant av metoden hÀrleds och analyseras ocksÄ. I artikel D konstrueras en reducerad ordningsmodell frÄn sampel av modellen för att lösa parametriserade linjÀra system. Specifikt Àr parametern en vektor med dimensionen 2, och samplingen utförs pÄ ett glest rutnÀt med den metod som föreslÄs i artikel C. En tensorfaktorisering anvÀnds för att bygga modellen. TillvÀgagÄngssÀtt av denna typ Àr inte alltid framgÄngsrika, och det Àr inte kÀnt pÄ förhand om en tensorfaktorisering kommer att konvergera för en given uppsÀttning av sampel. Detta arbete presenterar ett nytt sÀtt att generera en ny uppsÀttning sampel i samma parameterrum till en lÄg extra kostnad. De nya lösningar kan anvÀndas om tensorfaktoriseringen misslyckas. QC 2024-04-08</p

    Preconditioned infinite GMRES for parameterized linear systems

    Full text link
    We are interested in obtaining approximate solutions to parameterized linear systems of the form A(Ό)x(Ό)=bA(\mu) x(\mu) = b for many values of the parameter Ό\mu. Here A(Ό)A(\mu) is large, sparse, and nonsingular, with a nonlinear analytic dependence on Ό\mu. Our approach is based on a companion linearization for parameterized linear systems. The companion matrix is similar to the operator in the infinite Arnoldi method, and we use this to adapt the flexible GMRES setting. In this way, our method returns a function x~(Ό)\tilde{x}(\mu) which is cheap to evaluate for different Ό\mu, and the preconditioner is applied only approximately. This novel approach leads to increased freedom to carry out the action of the operation inexactly, which provides performance improvement over the method infinite GMRES, without a loss of accuracy in general. We show that the error of our method is estimated based on the magnitude of the parameter Ό\mu, the inexactness of the preconditioning, and the spectrum of the linear companion matrix. Numerical examples from a finite element discretization of a Helmholtz equation with a parameterized material coefficient illustrate the competitiveness of our approach. The simulations are reproducible and publicly available online

    Preconditioned Infinite GMRES for Parameterized Linear Systems

    No full text
    We are interested in obtaining solutions to parameterized linear systems of the form A(mu)x(mu) = b for many values of the parameter mu. Here A(mu) is large, sparse, and nonsingular with a nonlinear, analytic dependence on mu. Our approach approximates the solution to a linearized system in a flexible GMRES setting [Y. Saad, SIAM J. Sci. Comput., 14 (1993), pp. 461-469], where the linearization is based on a companion matrix similar to the operator in the infinite Arnoldi method [E. Jarlebring, W. Michiels, and K. Meerbergen, Numer. Math., 122 (2012), pp. 169-195]. This novel approach applies the action of a preconditioner inexactly, providing performance improvement over the method infinite GMRES [Jarlebring and Correnty, SIAM J. Matrix Anal. Appl., 43 (2022), pp. 1382-1405] without a loss of accuracy in general. The method returns a function (x) over tilde(mu) which is cheap to evaluate for different mu. We show that the error of our method is estimated based on the magnitude of the parameter mu, the inexactness of the preconditioning, and the spectrum of the companion matrix. Numerical examples from a finite element discretization of a Helmholtz equation with a parameterized material coefficient illustrate the competitiveness of our approach. The software used in the simulations is publicly available online, and all the experiments are reproducible. QC 20240409</p

    Chebyshev HOPGD with sparse grid sampling for parameterized linear systems

    No full text
    We consider approximating solutions to parameterized linear systems of the form A(ÎŒ1, ÎŒ2)x(ÎŒ1, ÎŒ2) = b, where (ÎŒ1, ÎŒ2) ∈ R2. Here the matrix A(ÎŒ1, ÎŒ2) ∈ Rnxn is nonsingular, large, and sparse and depends nonlinearly on the parameters ÎŒ1 and ÎŒ2. Specifically, the system arises from a discretization of a partial differential equation and x(ÎŒ1,ÎŒ2) ∈ Rn, b ∈ Rn. This work combines companion linearization with the Krylov subspace method preconditioned bi-conjugate gradient (BiCG) and a decomposition of a tensor matrix of precomputed solutions, called snapshots. As a result, a reduced order model of x(ÎŒ1,ÎŒ2) is constructed, and this model can be evaluated in a cheap way for many values of the parameters. Tensor decompositions performed on a set of snapshots can fail to reach a certain level of accuracy, and it is not known a priori if a decomposition will be successful. Moreover, the selection of snapshots can affect both the quality of the produced model and the computation time required for its construction. This new method offers a way to generate a new set of solutions on the same parameter space at little additional cost. An interpolation of the model is used to produce approximations on the entire parameter space, and this method can be used to solve a parameter estimation problem. Numerical examples of a parameterized Helmholtz equation show the competitiveness of our approach. The simulations are reproducible, and the software is available online. QC 20240409</p

    Chebyshev HOPGD with sparse grid sampling for parameterized linear systems

    No full text
    We consider approximating solutions to parameterized linear systems of the form A(ÎŒ1, ÎŒ2)x(ÎŒ1, ÎŒ2) = b, where (ÎŒ1, ÎŒ2) ∈ R2. Here the matrix A(ÎŒ1, ÎŒ2) ∈ Rnxn is nonsingular, large, and sparse and depends nonlinearly on the parameters ÎŒ1 and ÎŒ2. Specifically, the system arises from a discretization of a partial differential equation and x(ÎŒ1,ÎŒ2) ∈ Rn, b ∈ Rn. This work combines companion linearization with the Krylov subspace method preconditioned bi-conjugate gradient (BiCG) and a decomposition of a tensor matrix of precomputed solutions, called snapshots. As a result, a reduced order model of x(ÎŒ1,ÎŒ2) is constructed, and this model can be evaluated in a cheap way for many values of the parameters. Tensor decompositions performed on a set of snapshots can fail to reach a certain level of accuracy, and it is not known a priori if a decomposition will be successful. Moreover, the selection of snapshots can affect both the quality of the produced model and the computation time required for its construction. This new method offers a way to generate a new set of solutions on the same parameter space at little additional cost. An interpolation of the model is used to produce approximations on the entire parameter space, and this method can be used to solve a parameter estimation problem. Numerical examples of a parameterized Helmholtz equation show the competitiveness of our approach. The simulations are reproducible, and the software is available online. QC 20240409</p
    corecore