56 research outputs found

    Economic interactions and social tolerance: A dynamic perspective

    Get PDF
    We propose an evolutionary game to analyze the dynamics of tolerance among heterogeneous economic agents. We show that: (i) intolerance is much more persistent than tolerance; (ii) a fully tolerant society assures prosperity; (iii) cultural integration should precede economic integration

    Growth and social capital: an evolutionary model

    Get PDF
    In this paper, we analyze the role of cooperation between firms through a model of growth and social capital. In a growth model Ă  la Solow we incorporate the set of resources that a relational network has at its disposals, as a distinct production factor, and thus examine its dissemination through evolutionary type processes in firm interactions. Dynamic analysis of the model demonstrates that cooperation is able to increase the productivity of factors, fostering a higher rate of growth in the long term. The most significant result is that scarcity of social capital can produce a general collapse of the economic system in areas in which long term growth is usually sustained by the learning by doing and spillover of knowledge phenomena. This conclusion leads to reconsider the role of local development economic policies that should concentrate on activities that promote repeated interaction between firms proven to be cooperative or that encourage the formation of technological consortia.Economic growth; Social capital; Networks; Evolutionary games

    PAR1 activation induces the release by Schwann cells of factors promoting cell survival and neuritogenesis

    Get PDF
    Protease-activated receptor 1 (PAR1) is a member of a family of four G-protein-coupled receptors which are activated by proteolytic cleavage of their N-terminal extracellular domain. The expression and the role of PAR1 in peripheral nervous system (PNS) is still poorly investigated, although high PAR1 mRNA expression was found in the dorsal root ganglia and in the non-compacted Schwann cell myelin microvilli at the nodes of Ranvier. Schwann cells (SCs) are the principal population of glial cells of the PNS which myelinate axons and play a key role in axonal regeneration and remyelination. Aim of the present study was to determine if the activation of PAR1 affects the neurotrophic properties of SCs. By double immunofluorescence we observed a specific staining for PAR1 in S100ȕ-positive cells of rat sciatic nerve and sciatic teased fibers. Moreover, PAR1 was highly expressed in SC cultures obtained from both neonatal and adult rat sciatic nerves. When PAR1 specific agonists were added to these cultures an increased proliferation rate was observed. Moreover, the conditioned medium obtained from primary SCs treated with PAR1 agonists increased cell survival and neurite outgrowth on PC12 cells respect to controls. By proteomics, western blot and RT-PCR analyses we identified five proteins which are released by SCs following PAR1 stimulation: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). Conversely, a significant decrease in the level of three proteins was observed: Complement C1r subcomponent (C1r) and Complement component 1 Q subcomponent-bindingprotein (C1qbp). When PAR1 expression was silenced by siRNA the observed pro-survival and neurotrophic properties of SCs appear to be reduced respect to controls. References PAR1 activation affects the neurotrophic properties of Schwann cells. Pompili E1, Fabrizi C2, Somma F2, Correani V3, Maras B3, Schininà ME3, Ciraci V2, Artico M4, Fornai F5, Fumagalli L2. 2017 Jan 4;79:23-33. doi: 10.1016/j.mcn.2017.01.001.Schwann cells (SCs) regulate a wide variety of axonal functions in the peripheral nervous system, providing a supportive growth environment following nerve injury (1). Here we show that rat SCs express the protease-activated receptor-1 (PAR1) both in vivo and in vitro. PAR1 is a G-protein coupled receptor eliciting cellular responses to thrombin and other proteases (2). To investigate if PAR1 activation affects the neurotrophic properties of SCs, this receptor was activated by a specific agonist peptide (TFLLR) and the conditioned medium was transferred to PC12 pheocromocytoma cells for assessing cell survival and neurite outgrowth. Culture medium from SCs treated with 10 µM TFLLR reduced significantly the release of LDH and increased the viability of PC12 cells with respect to the medium of the untreated SCs. Furthermore, conditioned medium from TFLLR-treated SCs increased neurite outgrowth on PC12 cells respect to control medium from untreated cells. To identify putative neurotrophic candidates we performed proteomic analysis on SC secretoma and real time PCR experiments after PAR1 activation. Stimulation of SCs with TFLLR increased specifically the release of a subset of five proteins: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). At the same time there was a significant decrease in the level of three proteins: Complement C1r subcomponent (C1r), Complement component 1 Q subcomponent-binding protein (C1qbp) and Angiogenic factor with G patch and FHA domains 1 (Aggf1). These data indicate that PAR1 stimulation does induce the release by SCs of factors promoting cell survival and neuritogenesis. Among these proteins, Mif, Sdc, Dcn and Mmp2 are of particular interest

    A combined proteomics, metabolomics and in vivo analysis approach for the characterization of probiotics in large-scale production

    Get PDF
    The manufacturing processes of commercial probiotic strains may be affected in different ways in the attempt to optimize yield, costs, functionality, or stability, influencing gene expression, protein patterns, or metabolic output. Aim of this work is to compare different samples of a high concentration (450 billion bacteria) multispecies (8 strains) formulation produced at two different manufacturing sites, United States of America (US) and Italy (IT), by applying a combination of functional proteomics, metabolomics, and in vivo analyses. Several protein-profile differences were detected between IT-and US-made products, with Lactobacillus paracasei, Streptococcus thermophilus, and Bifidobacteria being the main affected probiotics/microorganisms. Performing proton nuclear magnetic spectroscopy (1H-NMR), some discrepancies in amino acid, lactate, betaine and sucrose concentrations were also reported between the two products. Finally, we investigated the health-promoting and antiaging effects of both products in the model organism Caenorhabditis elegans. The integration of omics platforms with in vivo analysis has emerged as a powerful tool to assess manufacturing procedures

    Growth and social capital: an evolutionary model

    Get PDF
    In this paper, we analyze the role of cooperation between firms through a model of growth and social capital. In a growth model Ă  la Solow we incorporate the set of resources that a relational network has at its disposals, as a distinct production factor, and thus examine its dissemination through evolutionary type processes in firm interactions. Dynamic analysis of the model demonstrates that cooperation is able to increase the productivity of factors, fostering a higher rate of growth in the long term. The most significant result is that scarcity of social capital can produce a general collapse of the economic system in areas in which long term growth is usually sustained by the learning by doing and spillover of knowledge phenomena. This conclusion leads to reconsider the role of local development economic policies that should concentrate on activities that promote repeated interaction between firms proven to be cooperative or that encourage the formation of technological consortia

    Growth and social capital: an evolutionary model

    Get PDF
    In this paper, we analyze the role of cooperation between firms through a model of growth and social capital. In a growth model Ă  la Solow we incorporate the set of resources that a relational network has at its disposals, as a distinct production factor, and thus examine its dissemination through evolutionary type processes in firm interactions. Dynamic analysis of the model demonstrates that cooperation is able to increase the productivity of factors, fostering a higher rate of growth in the long term. The most significant result is that scarcity of social capital can produce a general collapse of the economic system in areas in which long term growth is usually sustained by the learning by doing and spillover of knowledge phenomena. This conclusion leads to reconsider the role of local development economic policies that should concentrate on activities that promote repeated interaction between firms proven to be cooperative or that encourage the formation of technological consortia

    Reduced pulmonary oxygen diffusion at 36 weeks of postmenstrual age in small-for-gestational-age preterm infants of less than 32 weeks without bronchopulmonary dysplasia

    Get PDF
    Background: Small-for-gestational-age (SGA) preterm infants are at increased risk of developing bronchopulmonary dysplasia (BPD). There is limited information on pulmonary oxygen diffusion of SGA preterm infants, particularly in those without BPD. Objective: To compare the pulmonary oxygen diffusion of SGA to that of appropriate-for-gestational-age (AGA) preterm infants without BPD. Study Design: Preterm infants with a gestational age (GA) between 24.0 and 31.6 weeks were studied. The oxygen saturation (SpO2), fraction to inspired oxygen (FiO2), and the SpO2 to FiO2 ratio (SFR) were compared between SGA and AGA infants. The association between SGA and SFR at 36 weeks was assessed using a multiple regression analysis. In the subgroup without BPD, SGA were match-paired for GA and gender with AGA infants. Results: We analyzed 1189 infants surviving at 36 weeks: 194 (16%) were SGA and 995 (84%) AGA. The incidence of BPD was significantly higher in SGA than AGA infants (32% vs. 13%; p =.000). Out of the 995 infants without BPD, 132 (13%) were SGA and 863 (87%) AGA. SGA was negatively associated with the SFR value at 36 weeks, independently from BPD. SGA infants without BPD had significantly higher (better) SFR at birth, but lower (worse) SpO2 and SFR and from 33 to 36 weeks than their matched AGA counterpart. At 36 weeks, median SpO2 and SFR values were 97.7 versus 98.4 (p =.006) and 465 versus 468 (p =.010) in match-paired SGA and AGA, respectively. Conclusion: Among preterm infants of less than 32 weeks and without BPD, SGA infants had a reduced pulmonary oxygen diffusion at 36 weeks in comparison with AGA infants

    PAR1 activation induces the release by Schwann cells of factors promoting cell survival and neuritogenesis

    Get PDF
    Protease-activated receptor 1 (PAR1) is a member of a family of four G-protein-coupled receptors which are activated by proteolytic cleavage of their N-terminal extracellular domain. The expression and the role of PAR1 in peripheral nervous system (PNS) is still poorly investigated, although high PAR1 mRNA expression was found in the dorsal root ganglia and in the non-compacted Schwann cell myelin microvilli at the nodes of Ranvier. Schwann cells (SCs) are the principal population of glial cells of the PNS which myelinate axons and play a key role in axonal regeneration and remyelination. Aim of the present study was to determine if the activation of PAR1 affects the neurotrophic properties of SCs. By double immunofluorescence we observed a specific staining for PAR1 in S100ȕ-positive cells of rat sciatic nerve and sciatic teased fibers. Moreover, PAR1 was highly expressed in SC cultures obtained from both neonatal and adult rat sciatic nerves. When PAR1 specific agonists were added to these cultures an increased proliferation rate was observed. Moreover, the conditioned medium obtained from primary SCs treated with PAR1 agonists increased cell survival and neurite outgrowth on PC12 cells respect to controls. By proteomics, western blot and RT-PCR analyses we identified five proteins which are released by SCs following PAR1 stimulation: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). Conversely, a significant decrease in the level of three proteins was observed: Complement C1r subcomponent (C1r) and Complement component 1 Q subcomponent-bindingprotein (C1qbp). When PAR1 expression was silenced by siRNA the observed pro-survival and neurotrophic properties of SCs appear to be reduced respect to controls. References PAR1 activation affects the neurotrophic properties of Schwann cells. Pompili E1, Fabrizi C2, Somma F2, Correani V3, Maras B3, Schininà ME3, Ciraci V2, Artico M4, Fornai F5, Fumagalli L2. 2017 Jan 4;79:23-33. doi: 10.1016/j.mcn.2017.01.001.Schwann cells (SCs) regulate a wide variety of axonal functions in the peripheral nervous system, providing a supportive growth environment following nerve injury (1). Here we show that rat SCs express the protease-activated receptor-1 (PAR1) both in vivo and in vitro. PAR1 is a G-protein coupled receptor eliciting cellular responses to thrombin and other proteases (2). To investigate if PAR1 activation affects the neurotrophic properties of SCs, this receptor was activated by a specific agonist peptide (TFLLR) and the conditioned medium was transferred to PC12 pheocromocytoma cells for assessing cell survival and neurite outgrowth. Culture medium from SCs treated with 10 µM TFLLR reduced significantly the release of LDH and increased the viability of PC12 cells with respect to the medium of the untreated SCs. Furthermore, conditioned medium from TFLLR-treated SCs increased neurite outgrowth on PC12 cells respect to control medium from untreated cells. To identify putative neurotrophic candidates we performed proteomic analysis on SC secretoma and real time PCR experiments after PAR1 activation. Stimulation of SCs with TFLLR increased specifically the release of a subset of five proteins: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). At the same time there was a significant decrease in the level of three proteins: Complement C1r subcomponent (C1r), Complement component 1 Q subcomponent-binding protein (C1qbp) and Angiogenic factor with G patch and FHA domains 1 (Aggf1). These data indicate that PAR1 stimulation does induce the release by SCs of factors promoting cell survival and neuritogenesis. Among these proteins, Mif, Sdc, Dcn and Mmp2 are of particular interest
    • …
    corecore