14,483 research outputs found

    Acoustic displacement triangle based on the individual element test

    Get PDF
    A three node, displacement based, acoustic element is developed. In order to avoid spurious rotational modes, a higher order stiffness is introduced. The higher order stiffness is developed from an incompatible strain field which computes element volume changes under nodal rotational displacements fields. The higher order strain satisfies the IET requirements, non affecting convergence. The higher order stiffness is modulated, element by element, with a factor. Thus, the displacement based formulation is capable of placing the spurious rotational modes over the range of physical compressional modes that can be accurately captured by the mesh

    The Resonance Overlap and Hill Stability Criteria Revisited

    Get PDF
    We review the orbital stability of the planar circular restricted three-body problem, in the case of massless particles initially located between both massive bodies. We present new estimates of the resonance overlap criterion and the Hill stability limit, and compare their predictions with detailed dynamical maps constructed with N-body simulations. We show that the boundary between (Hill) stable and unstable orbits is not smooth but characterized by a rich structure generated by the superposition of different mean-motion resonances which does not allow for a simple global expression for stability. We propose that, for a given perturbing mass m1m_1 and initial eccentricity ee, there are actually two critical values of the semimajor axis. All values aaunstablea a_{\rm unstable} are unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is a function of the eccentricity. The second limit is virtually insensitive to the initial eccentricity, and closely resembles a new resonance overlap condition (for circular orbits) developed in terms of the intersection between first and second-order mean-motion resonances.Comment: 33 pages, 14 figures, accepte

    The importance of scalar fields as extradimensional metric components in Kaluza-Klein models

    Full text link
    Extradimensional models are achieving their highest popularity nowadays, among other reasons, because they can plausible explain some standard cosmology issues, such as the cosmological constant and hierarchy problems. In extradimensional models, we can infer that the four-dimensional matter rises as a geometric manifestation of the extra coordinate. In this way, although we still cannot see the extra dimension, we can relate it to physical quantities that are able to exert such a mechanism of matter induction in the observable universe. In this work we propose that scalar fields are those physical quantities. The models here presented are purely geometrical in the sense that no matter lagrangian is assumed and even the scalar fields are contained in the extradimensional metric. The results are capable of describing different observable cosmic features and yield an alternative to ultimately understand the extra dimension and the mechanism in which it is responsible for the creation of matter in the observable universe

    Configurational entropy in f(R,T)f(R,T) brane models

    Full text link
    In this work we investigate generalized theories of gravity in the so-called configurational entropy (CE) context. We show, by means of this information-theoretical measure, that a stricter bound on the parameter of f(R,T)f(R,T) brane models arises from the CE. We find that these bounds are characterized by a valley region in the CE profile, where the entropy is minimal. We argue that the CE measure can open a new role and an important additional approach to select parameters in modified theories of gravitation
    • …
    corecore