13,285 research outputs found
The importance of scalar fields as extradimensional metric components in Kaluza-Klein models
Extradimensional models are achieving their highest popularity nowadays,
among other reasons, because they can plausible explain some standard cosmology
issues, such as the cosmological constant and hierarchy problems. In
extradimensional models, we can infer that the four-dimensional matter rises as
a geometric manifestation of the extra coordinate. In this way, although we
still cannot see the extra dimension, we can relate it to physical quantities
that are able to exert such a mechanism of matter induction in the observable
universe. In this work we propose that scalar fields are those physical
quantities. The models here presented are purely geometrical in the sense that
no matter lagrangian is assumed and even the scalar fields are contained in the
extradimensional metric. The results are capable of describing different
observable cosmic features and yield an alternative to ultimately understand
the extra dimension and the mechanism in which it is responsible for the
creation of matter in the observable universe
Configurational entropy in brane models
In this work we investigate generalized theories of gravity in the so-called
configurational entropy (CE) context. We show, by means of this
information-theoretical measure, that a stricter bound on the parameter of
brane models arises from the CE. We find that these bounds are
characterized by a valley region in the CE profile, where the entropy is
minimal. We argue that the CE measure can open a new role and an important
additional approach to select parameters in modified theories of gravitation
Negative-energy perturbations in cylindrical equilibria with a radial electric field
The impact of an equilibrium radial electric field on negative-energy
perturbations (NEPs) (which are potentially dangerous because they can lead to
either linear or nonlinear explosive instabilities) in cylindrical equilibria
of magnetically confined plasmas is investigated within the framework of
Maxwell-drift kinetic theory. It turns out that for wave vectors with a
non-vanishing component parallel to the magnetic field the conditions for the
existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D.
Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for
the existence of perpendicular NEPs, which are found to be the most important
perturbations, is modified. For ( is the
electrostatic potential) and ( is
the total plasma pressure), a case which is of operational interest in magnetic
confinement systems, the existence of perpendicular NEPs depends on ,
where is the charge of the particle species . In this case the
electric field can reduce the NEPs activity in the edge region of tokamaklike
and stellaratorlike equilibria with identical parabolic pressure profiles, the
reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late
Classical emulation of quantum-coherent thermal machines
The performance enhancements observed in various models of continuous quantum
thermal machines have been linked to the buildup of coherences in a preferred
basis. But, is this connection always an evidence of `quantum-thermodynamic
supremacy'? By force of example, we show that this is not the case. In
particular, we compare a power-driven three-level continuous quantum
refrigerator with a four-level combined cycle, partly driven by power and
partly by heat. We focus on the weak driving regime and find the four-level
model to be superior since it can operate in parameter regimes in which the
three-level model cannot, it may exhibit a larger cooling rate, and,
simultaneously, a better coefficient of performance. Furthermore, we find that
the improvement in the cooling rate matches the increase in the stationary
quantum coherences exactly. Crucially, though, we also show that the
thermodynamic variables for both models follow from a classical representation
based on graph theory. This implies that we can build incoherent
stochastic-thermodynamic models with the same steady-state operation or,
equivalently, that both coherent refrigerators can be emulated classically.
More generally, we prove this for any N-level weakly driven device with a
`cyclic' pattern of transitions. Therefore, even if coherence is present in a
specific quantum thermal machine, it is often not essential to replicate the
underlying energy conversion process.Comment: 13 pages, 4 figures; references updated; appendix adde
- …