8 research outputs found
Use of Plant Proteins as Microencapsulating Agents of Bioactive Compounds Extracted from Annatto Seeds (Bixa orellana L.)
ABSTRACT: This study aimed to assess the thermal stability of the bioactive compounds from annatto
seed extract, encapsulated by ionic gelation using quinoa proteins, lentil proteins, soy proteins,
and sodium caseinate as carrying materials. The 10.0% aqueous dispersions of the different proteins
(carriers) were prepared and mixed with the annatto seed extract. The dispersions were then extruded
into a calcium chloride solution to induce the extract encapsulation. The capsules were characterized
by encapsulation efficiency, particle size, infrared transmission spectroscopy, confocal microscopy,
and scanning electron microscopy (SEM). The antioxidant and antimicrobial activities, the polyphenol
compounds, and bixin content from the free and encapsulated extract were assessed once stored
for 12 d at different temperatures (4 â—¦C, 25 â—¦C, and 65 â—¦C). The results demonstrated the ability of
the proteins to encapsulate the annatto extract with encapsulation efficiencies ranging from 58% to
80%, where the protein structure and amino acid content were the relevant factors to obtain high
encapsulation efficiencies. The free extracts stored at 65 â—¦C for 12 d experienced a degradation of bixin
and polyphenol compounds, respectively. Conversely, the encapsulated extract had degradations
from ~34.00% to ~4.05% for polyphenol compounds and ~20.0% for bixin, respectively. These proteins
have a potential encapsulation capacity of annatto extract by ionic gelation
Immunogenic Properties of Recombinant Enzymes from Bothrops ammodytoides towards the Generation of Neutralizing Antibodies against Its Own Venom
Bothropic venoms contain enzymes such as metalloproteases, serine-proteases, and phospholipases, which acting by themselves, or in synergism, are the cause of the envenomation symptoms and death. Here, two mRNA transcripts, one that codes for a metalloprotease and another for a serine-protease, were isolated from a Bothrops ammodytoides venom gland. The metalloprotease and serine-protease transcripts were cloned on a pCR®2.1-TOPO vector and consequently expressed in a recombinant way in E. coli (strains Origami and M15, respectively), using pQE30 vectors. The recombinant proteins were named rBamSP_1 and rBamMP_1, and they were formed by an N-terminal fusion protein of 16 amino acid residues, followed by the sequence of the mature proteins. After bacterial expression, each recombinant enzyme was recovered from inclusion bodies and treated with chaotropic agents. The experimental molecular masses for rBamSP_1 and rBamMP_1 agreed with their expected theoretical ones, and their secondary structure spectra obtained by circular dichroism were comparable to that of similar proteins. Additionally, equivalent mixtures of rBamSP_1, rBamMP_1 together with a previous reported recombinant phospholipase, rBamPLA2_1, were used to immunize rabbits to produce serum antibodies, which in turn recognized serine-proteases, metalloproteases and PLA2s from B. ammodytoides and other regional viper venoms. Finally, rabbit antibodies neutralized the 3LD50 of B. ammodytoides venom
Crotoxin B: Heterologous Expression, Protein Folding, Immunogenic Properties, and Irregular Presence in Crotalid Venoms
Crotoxin complex CA/CB and crotamine are the main toxins associated with Crotalus envenomation besides the enzymatic activities of phospholipases (PLA2) and proteases. The neutralization at least of the crotoxin complex by neutralizing the subunit B could be a key in the production process of antivenoms against crotalids. Therefore, in this work, a Crotoxin B was recombinantly expressed to evaluate its capacity as an immunogen and its ability to produce neutralizing antibodies against crotalid venoms. A Crotoxin B transcript from Crotalus tzabcan was cloned into a pCR®2.1-TOPO vector (Invitrogen, Waltham, MA, USA) and subsequently expressed heterologously in bacteria. HisrCrotoxin B was extracted from inclusion bodies and refolded in vitro. The secondary structure of HisrCrotoxin B was comparable to the secondary structure of the native Crotoxin B, and it has PLA2 activity as the native Crotoxin B. HisrCrotoxin B was used to immunize rabbits, and the obtained antibodies partially inhibited the activity of PLA2 from C. tzabcan. The anti-HisrCrotoxin B antibodies neutralized the native Crotoxin B and the whole venoms from C. tzabcan, C. s. salvini, and C. mictlantecuhtli. Additionally, anti-HisrCrotoxin B antibodies recognized native Crotoxin B from different Crotalus species, and they could discriminate venom in species with high or low levels of or absence of Crotoxin B
Transcriptomic Analysis of the Venom Gland and Enzymatic Characterization of the Venom of <i>Phoneutria depilata</i> (Ctenidae) from Colombia
The transcriptome of the venom glands of the Phoneutria depilata spider was analyzed using RNA-seq with an Illumina protocol, which yielded 86,424 assembled transcripts. A total of 682 transcripts were identified as potentially coding for venom components. Most of the transcripts found were neurotoxins (156) that commonly act on sodium and calcium channels. Nevertheless, transcripts coding for some enzymes (239), growth factors (48), clotting factors (6), and a diuretic hormone (1) were found, which have not been described in this spider genus. Furthermore, an enzymatic characterization of the venom of P. depilata was performed, and the proteomic analysis showed a correlation between active protein bands and protein sequences found in the transcriptome. The transcriptomic analysis of P. depilata venom glands show a deeper description of its protein components, allowing the identification of novel molecules that could lead to the treatment of human diseases, or could be models for developing bioinsecticides
Antimicrobial and Immunomodulatory Effects of Selected Chemokine and Antimicrobial Peptide on Cytokine Profile during <i>Salmonella</i> Typhimurium Infection in Mouse
The antimicrobial and immunomodulatory capacities of the peptide Css54 and the chemokine MCP-1 were tested. The first, a peptide isolated from the venom of the scorpion Centruroides suffusus suffusus was synthesized chemically. In contrast, the second is a monocyte chemoattractant expressed as a recombinant protein in our lab. It was observed in vitro that Css54 inhibited the growth of Salmonella enterica serovar Typhimurium (6.2 µg/mL). At high concentrations, it was toxic to macrophages (25 µg/mL), activated macrophage phagocytosis (1.5 µg/mL), and bound Salmonella LPS (3 µg/mL). On the other hand, the recombinant MCP-1 neither inhibited the growth of Salmonella Typhimurium nor was it toxic to macrophages (up to 25 µg/mL), nor activated macrophage phagocytosis or bound Salmonella LPS (up to 3 µg/mL). Although it was observed in vivo in mice Balb/C that both Css54 and MCP-1 did not resolve the intraperitoneal infection by S. Typhimurium, Css54 decreased the expression of IL-6 and increased IL-10, IL-12p70, and TNF-α levels; meanwhile, MCP-1 decreased the expression of IFN-γ and increased IL-12p70 and TNF-α. It was also observed that the combination of both molecules Css54 and MCP-1 increased the expression of IL-10 and TNF-α