7 research outputs found

    Characterization of Agricultural Residues of Zea mays for Their Application as Solid Biofuel: Case Study in San Francisco Pichátaro, Michoacán, Mexico

    No full text
    This proposal evaluates the energy potential of agricultural residues of Zea mays from an indigenous community in Mexico. The study consists of four stages: (a) evaluation of residue production in all community farming areas (b) morphological and physicochemical characterization, using scanning electron microscopy (SEM), as well as infrared spectroscopy (FTIR) and Raman (c) the proximal and functional evaluation of the residues, through fiber analysis, determination of fixed carbon, humidity, estimation of calorific value, ash microanalysis and elemental analysis, and (d) evaluation of energy potential and multicriteria analysis. The results show that Z. mays residues have initial moisture values of less than 10%, ash content below 20%, fixed carbon around 14% and a calorific value of 17.6 MJ/kg associated with polymeric compounds and carbohydrates, as well as a percentage of extractable compounds of the order of 40%. The production of these residues on the 249 hectares (ha) of cultivation used would generate 23 TJ/year, whereas if the total number of hectares available were cultivated, the total energy generation would be 330 TJ/year, which is enough to satisfy the wood fuel demand of approximately seven communities with the characteristics of the study community. Due to this potential, as well as the results of the characterization, the agricultural mentioned residues are an energy alternative to meet the energy demand in communities in Michoacán, Mexico

    Characterization of Agricultural Residues of <i>Zea</i> <i>mays</i> for Their Application as Solid Biofuel: Case Study in San Francisco Pichátaro, Michoacán, Mexico

    No full text
    This proposal evaluates the energy potential of agricultural residues of Zea mays from an indigenous community in Mexico. The study consists of four stages: (a) evaluation of residue production in all community farming areas (b) morphological and physicochemical characterization, using scanning electron microscopy (SEM), as well as infrared spectroscopy (FTIR) and Raman (c) the proximal and functional evaluation of the residues, through fiber analysis, determination of fixed carbon, humidity, estimation of calorific value, ash microanalysis and elemental analysis, and (d) evaluation of energy potential and multicriteria analysis. The results show that Z. mays residues have initial moisture values of less than 10%, ash content below 20%, fixed carbon around 14% and a calorific value of 17.6 MJ/kg associated with polymeric compounds and carbohydrates, as well as a percentage of extractable compounds of the order of 40%. The production of these residues on the 249 hectares (ha) of cultivation used would generate 23 TJ/year, whereas if the total number of hectares available were cultivated, the total energy generation would be 330 TJ/year, which is enough to satisfy the wood fuel demand of approximately seven communities with the characteristics of the study community. Due to this potential, as well as the results of the characterization, the agricultural mentioned residues are an energy alternative to meet the energy demand in communities in Michoacán, Mexico
    corecore