71 research outputs found

    Asymptotic description of maximum mistuning amplification of bladed disk forced response

    Full text link
    The problem of determining the maximum forced response vibration amplification that can be produced just by the addition of a small mistuning to a perfectly cyclical bladed disk still remains not completely clear. In this paper we apply a recently introduced perturbation methodology, the Asymptotic Mistuning Model (AMM), to determine which are the key ingredients of this amplification process are, and to evaluate the maximum mistuning amplification factor that a given modal family with a particular distribution of tuned frequencies can exhibit. A more accurate upper bound for the maximum forced response amplification of a mistuned bladed disk is obtained from this description, and the results of the AMM are validated numerically using a simple mass-spring model

    Turbine broadband noise predictions using linearised frequency domain navier-stokes solvers †

    Get PDF
    An investigation of hot gas ingestion driven by the disc pumping effect in a chute seal was conducted at the Oxford Rotor Facility. Measurements of mean pressure, unsteady pressure and gas concentration have been logged and analysed under different operating conditions. The sensitivity of mean cavity pressure coefficient, frequency spectra of the unsteady pressures and sealing effectiveness to changing conditions of purge flow, annulus flow, rotor disc speed and seal clearance have been studied. The steady pressures revealed the development of two vortices in the cavity, induced by the sharp change in geometry of the stator wall. The increased shear at the interface between these two vortices strengthened the unsteady activity at this location. The addition of mainstream flow improved the sealing capability of the chute seal under certain operating conditions. The excitation of further frequencies when an axisymmetric annulus flow was introduced suggests a complex interaction between annulus and purge flows

    Physics of Vibrating Airfoils at Low Reduced Frequency

    Get PDF
    The unsteady aerodynamics of low pressure turbine vibrating airfoils in flap mode is studied in detail using a frequency domain linearized Navier-Stokes solver. Both the travelling-wave and influence coefficient formulations of the problem are used to highlight key aspects of the physics and understand different trends such as the effect of reduced frequency and Mach number. The study is focused in the low-reduced frequency regime which is of paramount relevance for the design of aeronautical low-pressure turbines and compressors. It is concluded that the effect of the Mach number on the unsteady pressure phase can be neglected in first approximation and that the unsteadiness of the vibrating and adjacent airfoils is driven by vortex shedding mechanisms. Finally a simple model to estimate the work-per-cycle as a function of the reduced frequency and Mach Number is provided. The edge-wise and torsion modes are presented in less detail but it is shown that acoustic waves are essential to explain its behaviour. The non-dimensional work-per-cycle of the edge-wise mode shows a large dependence with the Mach number while in the torsion mode a large number of airfoils is needed to reconstruct the work-per-cycle departing from the influence coefficients

    Forced Response of Mistuned Bladed Disks: Quantitative Validation of the Asymptotic Description

    Get PDF
    The effect of small mistuning in the forced response of a bladed disk is analyzed using a recently introduced methodology: the asymptotic mistuning model. The asymptotic mistuning model is an extremely reduced, simplified model that is derived directly from the full formulation of the mistuned bladed disk using a consistent perturbative procedure based on the relative smallness of the mistuning distortion. A detailed description of the derivation of the asymptotic mistuning model for a realistic bladed disk configuration is presented. The asymptotic mistuning model results for several different mistuning patterns and forcing conditions are compared with those from a high-resolution finite element model. The asymptotic mistuning model produces quantitatively accurate results, and, probably more relevant, it gives precise information about the factors (tuned modes and components of the mistuning pattern) that actually play a role in the vibrational forced response of mistuned bladed disks

    Asymptotic Description of Flutter Amplitude Saturation by Nonlinear Friction Forces

    Full text link
    The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude

    Turbine Broadband Noise Predictions Using Linearised Frequency Domain Navier-Stokes Solvers

    No full text
    A linear frequency domain Navier-Stokes solver is used to retain the influence of turning, thickness, and main geometric parameters on turbine broadband noise. The methodology has been applied to predict the broadband interaction noise produced by a representative low-speed low-pressure turbine section. The differences in the spectra with respect to those yielded by state-of-the-art flat plate based methodologies are up to 6 dB. The differences are caused by multiple effects that semi-analytical methodologies do not account for. The most important are blade thickness and turning, which have been studied separately to quantify their impact on the broadband noise footprint. The influence of changing the turbine operating conditions has been discussed as well. The outlet sound pressure level scales with the third and second power of the inlet and outlet Mach number, respectively, for constant turbulence intensity, within most of the frequency range considered
    corecore