98 research outputs found

    Comment to “Porphyry-related high-sulfidation mineralization early in Central American Arc Development: Cerro Quema deposit, Azuero Peninsula, Panama” by Perelló et al., (2020) / Comentario a “Mineralización de alta sulfuración en relación con pórfidos en el desarrollo del Arco Centroamericano: El depósito de Cerro Quema, Península de Azuero, Panamá” por Perelló et al., (2020)

    Get PDF
    The Cerro Quema Au-Cu deposit is hosted by a dacite dome complex of the Río Quema Formation, a Late Campanian-Maastrichtian volcano-sedimentary sequence of the Panamanian magmatic arc. Its formational age is constrained at ~49 Ma by field evidences, crosscutting relationships and 40Ar/39Ar geochronology (Corral et al., 2016, Corral, 2021). The recent molybdenite Re-Os dates by Perelló et al. (2020) claim that ore is spatially and temporally related to the host volcanic domes at ~71 Ma. After a thorough review of the geologic, geochemical and geochronological data from the Cerro Quema area, it is concluded that the Re-Os dates of Perelló et al. (2020) are not representative of the Cerro Quema formational age. Their proposed formational age at ~71 Ma is significantly older than the age of the host rock (~67 Ma). Furthermore, they invoke a previously unrecognized regional-scale magmatic event solely based on their molybdenite Re-Os dates. Instead, the Cerro Quema genetic model discussed here, in which magmatic-hydrothermal fluids derived from porphyry copper-like intrusions associated with the Valle Rico batholith produced the Au-Cu mineralization at ~49 Ma, is consistent with the geology, geochemistry and geochronology of the Azuero Peninsula. El yacimiento de Au-Cu de Cerro Quema está encajado en el complejo de domos dacíticos de la Formación Río Quema, una secuencia volcanosedimentaria de edad Campaniense-Maastrichtiense del arco magmático de Panamá. Su edad de formación de ~49 Ma ha sido determinada mediante evidencias de campo, relaciones de corte y geocronología 40Ar/39Ar (Corral et al., 2016, Corral, 2021). Las recientes edades de Re-Os en molibdenita presentadas por Perelló et al. (2020) afirman que la mineralización está relacionada espacial y temporalmente con los domos volcánicos, que actúan como roca caja, hace ~71 Ma. Después de una revisión exhaustiva de los datos geológicos, geoquímicos y geocronológicos del área de Cerro Quema, se concluye que las edades Re-Os de Perelló et al. (2020) no son representativas de la edad de formación de Cerro Quema. La edad de formación propuesta de ~71 Ma es significativamente más antigua que la edad de la roca caja (~67 Ma). Además, se propone un evento magmático a escala regional previamente no reconocido basándose únicamente en edades Re-Os en molibdenita. En cambio, el modelo genético de Cerro Quema discutido aquí, donde los fluidos magmáticos-hidrotermales derivados de intrusiones tipo pórfido cuprífero asociadas al batolito de Valle Rico produjeron la mineralización de oro-cobre hace ~49 Ma, es consistente con la geología, geoquímica y geocronología de la Península de Azuero

    New 40Ar/39Ar dating of alunite from the cerro quema Au-Cu deposit, Azuero Peninsula, Panama

    Get PDF
    Cerro Quema is a high-sulfidation epithermal Au-Cu deposit located in the Azuero Peninsula, southwestern Panama. It is hosted by a dacite dome complex of the Río Quema Formation, a volcano-sedimentary sequence of the Panamanian Cretaceous-Paleogene magmatic arc. Cerro Quema has oxide resources of 24.60 Mt at 0.71 g/t Au and 0.04% Cu, and sulfide resources of 11.38 Mt at 0.41 g/t Au and 0.31% Cu. Alunite 40Ar/39Ar dating of a sample from Cerro Quema yielded a final age of 48.8 ± 2.2 Ma (weighted average of plateau age) and 49.2 ± 3.3 Ma (weighted average of total gas age). This age is interpreted to represent the formational age of the Cerro Quema deposit at ~49 Ma, linking it to the Valle Rico batholith intrusive event. Based on the new alunite 40Ar/39Ar data and a reexamination of published geochronological data, magmatic-hydrothermal deposits such as the Río Pito porphyry copper and the Cerro Quema high-sulfidation epithermal deposit formed during the early arc stage (68-40 Ma) in the Chagres-Bayano arc (eastern Panama) and the Soná-Azuero arc (western Panama), respectively. They formed in a similar geodynamic setting at ~49 Ma, when diorites and quartz-diorites intruded Cretaceous volcano-sedimentary sequences. Cerro Quema and Río Pito provide evidence for the exploration potential of Cretaceous-Paleogene arc segments. Exploration should focus on Cretaceous volcanic and volcano-sedimentary sequences intruded by Paleogene batholiths of intermediate to felsic composition

    Prácticas de electrotecnia

    Full text link
    Prácticas de electrotecni

    Mineralogical distribution of germanium, gallium and indium at the Mt Carlton high-sulfidation epithermal deposit, NE Australia, and comparison with similar deposits worldwide

    Get PDF
    Germanium, gallium and indium are in high demand due to their growing usage in high-tech and green-tech applications. However, the mineralogy and the mechanisms of concentration of these critical elements in different types of hydrothermal ore deposits remain poorly constrained. We investigated the mineralogical distribution of Ge, Ga and In at the Mt Carlton high-sulfidation epithermal deposit in NE Australia, using electron probe microanalysis and laser ablation inductively-coupled plasma mass spectrometry. Parageneses from which selected minerals were analyzed include: Stage 1 acid sulfate alteration (alunite), Stage 2A high-sulfidation enargite mineralization (enargite, argyrodite, sphalerite, pyrite, barite), Stage 2B intermediate-sulfidation sphalerite mineralization (sphalerite, pyrite, galena) and Stage 3 hydrothermal void fill (dickite). Moderate to locally high concentrations of Ga were measured in Stage 1 alunite (up to 339 ppm) and in Stage 3 dickite (up to 150 ppm). The Stage 2A ores show enrichment in Ge, which is primarily associated with argyrodite (up to 6.95 wt % Ge) and Ge-bearing enargite (up to 2189 ppm Ge). Co-existing sphalerite has comparatively low Ge content (up to 143 ppm), while Ga (up to 1181 ppm) and In (up to 571 ppm) are higher. Sphalerite in Stage 2B contains up to 611 ppm Ge, 2829 ppm Ga and 2169 ppm In, and locally exhibits fine colloform bands of an uncharacterized Zn-In mineral with compositions close to CuZn2(In,Ga)S4. Barite, pyrite and galena which occur in association with Stage 2 mineralization were found to play negligible roles as carriers of Ge, Ga and In at Mt Carlton. Analyzed reference samples of enargite from seven similar deposits worldwide have average Ge concentrations ranging from 12 to 717 ppm (maximum 2679 ppm). The deposits from which samples showed high enrichment in critical elements in this study are all hosted in stratigraphic sequences that locally contain carbonaceous sedimentary rocks. In addition to magmatic-hydrothermal processes, such rocks could potentially be important for the concentration of critical elements in high-sulfidation epithermal deposits

    Contribución al conocimiento de la geología del depósito de Au-Cu de La Pava (Península de Azuero, Panamá)

    Get PDF
    The «La Pava» Au-Cu deposit is hosted by a vulcanosedimentary sequence, named Ocú Formation,developed in an island arc environment that resulted from the subduction of the Nazca Plate beneath the Caribbean Plate during the Cretaceous times. The deposit consists of disseminations and stockworks of pyrite and chalcopyrite accompanied by barite, quartz and carbonates. Three hydrothermal alteration zones have been recognized: silicic, argillic and propilityc, typical of gold-related high sulfidation systems. A supergenic alteration overprints the hydrothermal alterations developing a cap rich in silica and Feoxides. The detailed study of the Ocú Fm. indicates that the sulfides and the accompanying gold was formed in a submarine environment. Therefore we suggest that «La Pava» represents an Au-Cu hybrid deposit between high sulphidation epithermal and VMS types, which are found in volcanogenic massive sulphide environments

    The Paleozoic Mount Carlton deposit, Bowen Basin, Northeast Australia: shallow high-sulfidation epithermal Au-Ag-Cu mineralization formed during rifting

    Get PDF
    Mount Carlton is a Paleozoic high-sulfidation epithermal deposit located in the northern segment of the Bowen Basin, northeast Queensland, Australia. The deposit is hosted in Early Permian volcanic and sedimentary rocks, and an open-pit mining operation includes the Au-rich V2 pit in the northeast and the Ag-rich A39 pit in the southwest. Mineralization at Mt. Carlton occurred during active rifting, partly contemporaneously with the deposition of volcanic sediments in localized half-graben and graben basins. Steep normal faults and fracture networks related to the rifting acted as fluid conduits and localized cores of silicic alteration. The silicic cores transition outward to zones of quartz-alunite alteration, which are, in turn, enveloped by a zone of quartz-dickite-kaolinite alteration. Epithermal mineralization at Mt. Carlton developed in three stages: Cu-Au-Ag mineralization dominated by enargite was overprinted by Zn-Pb-Au-Ag mineralization dominated by sphalerite, which, in turn, was overprinted by Cu-Au-Ag mineralization dominated by tennantite. Proximal Au-Cu mineralization in the V2 pit occurs in networks of steep faults associated with veins and hydrothermal breccias within a massive rhyodacite porphyry. Three distinct ore zones (Eastern, Western, and Link) are aligned, en echelon, along a broadly E trending corridor. The Western ore zone continues along ~600-m strike length to the southwest into the A39 pit, and it shows a metal zonation, from proximal to distal, of Au-Cu → Cu-Zn-Pb-Ag → Ag-Pb-(Cu) → Ag. Distal Ag mineralization in the A39 pit is concentrated in a volcanolacustrine sedimentary sequence that overlies the rhyodacite porphyry. It occurs in a stratabound position oriented parallel to primary sedimentary layering and locally exhibits synsedimentary ore textures. Such textures are interpreted to have formed as mineralizing fluids discharged into what most likely were lakes developed within localized rift basins, at the same time that the volcanolacustrine sediments were deposited. At depth, equivalent ore textures were produced within open spaces in the structural roots of the rift basins. 40Ar/39Ar dating of hydrothermal alunite yielded an age range of 284 ± 7 to 277 ± 7 Ma, which links the formation of the Mt. Carlton deposit to the Early Permian back-arc rifting stage in the Bowen Basin. Prolonged extension provided rapid burial of the deposit beneath a postmineralization, volcanosedimentary cover, which was essential for the exceptional preservation of Mt. Carlton. The same extension caused displacement of the rock pile along a series of shallowly dipping detachment faults and segmentation and rotation of the ore zones across steeply dipping normal faults. This deformation would have displaced any underlying porphyry mineralization relative to the current location of Mt. Carlton

    Evolución del fluido en el sistema porfídico de Capsize, NE de Queensland, Australia

    Get PDF
    Depto. de Mineralogía y PetrologíaFac. de Ciencias GeológicasTRUEpu

    Characterization of 3D Printed Metal-PLA Composite Scaffolds for Biomedical Applications

    Get PDF
    Three-dimensional printing is revolutionizing the development of scaffolds due to their rapid-prototyping characteristics. One of the most used techniques is fused filament fabrication (FFF), which is fast and compatible with a wide range of polymers, such as PolyLactic Acid (PLA). Mechanical properties of the 3D printed polymeric scaffolds are often weak for certain applications. A potential solution is the development of composite materials. In the present work, metal-PLA composites have been tested as a material for 3D printing scaffolds. Three different materials were tested: copper-filled PLA, bronze-filled PLA, and steel-filled PLA. Disk-shaped samples were printed with linear infill patterns and line spacing of 0.6, 0.7, and 0.8 mm, respectively. The porosity of the samples was measured from cross-sectional images. Biocompatibility was assessed by culturing Human Bone Marrow-Derived Mesenchymal Stromal on the surface of the printed scaffolds. The results showed that, for identical line spacing value, the highest porosity corresponded to bronzefilled material and the lowest one to steel-filled material. Steel-filled PLA polymers showed good cytocompatibility without the need to coat the material with biomolecules. Moreover, human bone marrow-derived mesenchymal stromal cells differentiated towards osteoblasts when cultured on top of the developed scaffolds. Therefore, it can be concluded that steel-filled PLA bioprinted parts are valid scaffolds for bone tissue engineeringPeer ReviewedPostprint (published version

    Geology of the Cerro-Quema Au-Cu deposit (Azuero Peninsula, Panama)

    Get PDF
    The Cerro Quema district, located on the Azuero Peninsula, Panama, is part of a large regional hydrothermal system controlled by regional faults striking broadly E-W, developed within the Río Quema Formation. This formation is composed of volcanic, sedimentary and volcano-sedimentary rocks indicating a submarine depositional environment, corresponding to the fore-arc basin of a Cretaceous-Paleogene volcanic arc. The structures observed in the area and their tectono-stratigraphic relationship with the surrounding formations suggest a compressive and/or transpressive tectonic regime, at least during Late Cretaceous-Oligocene times. The igneous rocks of the Río Quema Formation plot within the calc-alkaline field with trace and rare earth element (REE) patterns of volcanic arc affinity. This volcanic arc developed on the Caribbean large igneous province during subduction of the Farallon Plate. Mineralization consists of disseminations of pyrite and enargite as well as a stockwork of pyrite and barite with minor sphalerite, galena and chalcopyrite, hosted by a subaqueous dacitic lava dome of the Río Quema Formation. Gold is present as submicroscopic grains and associated with pyrite as invisible gold. A hydrothermal alteration pattern with a core of advanced argillic alteration (vuggy silica with alunite, dickite, pyrite and enargite) and an outer zone of argillic alteration (kaolinite, smectite and illite) has been observed. Supergene oxidation overprinted the hydrothermal alteration resulting in a thick cap of residual silica and iron oxides. The ore minerals, the alteration pattern and the tectono-volcanic environment of Cerro Quema are consistent with a high sulfidation epithermal system developed in the Azuero peninsula during pre-Oligocene times

    Origin and evolution of mineralizing fluids and exploration of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama) from a fluid inclusion and stable isotope perspective.

    Get PDF
    Cerro Quema is a high sulfidation epithermal Au-Cu deposit with a measured, indicated and inferred resource of 35.98 Mt. @ 0.77 g/t Au containing 893,600 oz. Au (including 183,930 oz. Au equiv. of Cu ore). It is characterized by a large hydrothermal alteration zone which is interpreted to represent the lithocap of a porphyry system. The innermost zone of the lithocap is constituted by vuggy quartz with advanced argillic alteration locally developed on its margin, enclosed by a well-developed zone of argillic alteration, grading to an external halo of propylitic alteration. The mineralization occurs in the form of disseminations and microveinlets of pyrite, chalcopyrite, enargite, tennantite, and trace sphalerite, crosscut by quartz, barite, pyrite, chalcopyrite, sphalerite and galena veins. Microthermometric analyses of two phase (L + V) secondary fluid inclusions in igneous quartz phenocrysts in vuggy quartz and advanced argillically altered samples indicate low temperature (140-216 °C) and low salinity (0.5-4.8 wt% NaCl eq.) fluids, with hotter and more saline fluids identified in the east half of the deposit (Cerro Quema area). Stable isotope analyses (S, O, H) were performed on mineralization and alteration minerals, including pyrite, chalcopyrite, enargite, alunite, barite, kaolinite, dickite and vuggy quartz. The range of δ34S of sulfides is from −4.8 to −12.7¿, whereas δ34S of sulfates range from 14.1 to 17.4¿. The estimated δ34SΣS of the hydrothermal fluid is−0.5¿. Within the advanced argillic altered zone the δ34Svaluesof sulfides and sulfates are interpreted to reflect isotopic equilibriumat temperatures of ~240 °C. The δ18O values of vuggy quartz range from9.0 to 17.5¿, and the δ18O values estimated for the vuggy quartz-forming fluid range from−2.3 to 3.0¿, indicating that it precipitated frommixing ofmagmatic fluidswith surficial fluids. The δ18O of kaolinite ranges from12.7 to 18.1¿and δD from−103.3 to −35.2¿, whereas the δ18O of dickite varies between 12.7 and 16.3¿ and δD from−44 to −30. Based on δ18OandδD, two types of kaolinite/dickite can be distinguished, a supergene type and a hypogene type. Combined, the analytical data indicate that the Cerro Quema deposit formed from magmatic-hydrothermal fluids derived from a porphyry copper-like intrusion located at depth likely towards the east of the deposit. The combination of stable isotope geochemistry and fluid inclusion analysis may provide useful exploration vectors for porphyry copper targets in the high sulfidation/lithocap environment
    corecore