267 research outputs found

    Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content

    Get PDF
    In plant cells, cadmium (Cd) and arsenic (As) exert toxicity mainly by inducing oxidative stress through an imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and their detoxification. Nitric oxide (NO) is a RNS acting as signalling molecule coordinating plant development and stress responses, but also as oxidative stress inducer, depending on its cellular concentration. Peroxisomes are versatile organelles involved in plant metabolism and signalling, with a role in cellular redox balance thanks to their antioxidant enzymes, and their RNS (mainly NO) and ROS. This study analysed Cd or As effects on peroxisomes, and NO production and distribution in the root system, including primary root (PR) and lateral roots (LRs). Arabidopsis thaliana wild-type and transgenic plants enabling peroxisomes to be visualized in vivo, through the expression of the 35S-cyan fluorescent protein fused to the peroxisomal targeting signal1 (PTS1) were used. Peroxisomal enzymatic activities including the antioxidant catalase, the H2O2-generating glycolate oxidase, and the hydroxypyruvate reductase, and root system morphology were also evaluated under Cd/As exposure. Results showed that Cd and As differently modulate these activities, however, catalase activity was inhibited by both. Moreover, Arabidopsis root system was altered, with the pollutants differently affecting PR growth, but similarly enhancing LR formation. Only in the PR apex, and not in LR one, Cd more than As caused significant changes in peroxisome distribution, size, and in peroxisomal NO content. By contrast, neither pollutant caused significant changes in peroxisomes size and peroxisomal NO content in the LR apex

    A review on additive manufacturing and materials for catalytic applications: Milestones, key concepts, advances and perspectives

    Get PDF
    Catalysis, a driving force of the chemical industry is increasingly being influenced by additive manufacturing. The link between them is based on the need to intensify catalytic processes in order to make them more efficient and sustainable. Additive manufacturing can satisfy such a need, generating devices with an advanced design, easy production, and great adaptation, in addition to their catalytic functionality. The exponential growth of examples reported on the application of 3D-printing in catalysis has led to the need to compile and analyse these cases and thus establish, through this review, the most in-depth analysis done to date. The manuscript includes a brief background of the history of additive manufacturing and the classification of the different printing techniques. Subsequently, it identifies the intensification of processes, among other aspects, as the key for understanding the union of additive manufacturing and catalysis. Then, it explores in detail how such a combination occurs, establishing the most comprehensive classification to date between the two large groups of printable devices with catalytic properties. Finally, a series of perspectives are proposed in which the most probable courses of new advances in this field of research are identified.O.H. Laguna agradece a la Universidad de Jaén por el apoyo el contrato postdoctoral a través de la ‘‘Acción 6 del Plan de Apoyo a la Investigación de la Universidad de Jaén (2017-2019).

    Phenotype-loci associations in networks of patients with rare disorders: application to assist in the diagnosis of novel clinical cases

    Get PDF
    Copy number variations (CNVs) are genomic structural variations (deletions, duplications, or translocations) that represent the 4.8–9.5% of human genome variation in healthy individuals. In some cases, CNVs can also lead to disease, being the etiology of many known rare genetic/genomic disorders. Despite the last advances in genomic sequencing and diagnosis, the pathological effects of many rare genetic variations remain unresolved, largely due to the low number of patients available for these cases, making it difficult to identify consistent patterns of genotype–phenotype relationships. We aimed to improve the identification of statistically consistent genotype–phenotype relationships by integrating all the genetic and clinical data of thousands of patients with rare genomic disorders (obtained from the DECIPHER database) into a phenotype–patient–genotype tripartite network. Then we assessed how our network approach could help in the characterization and diagnosis of novel cases in clinical genetics. The systematic approach implemented in this work is able to better define the relationships between phenotypes and specific loci, by exploiting large-scale association networks of phenotypes and genotypes in thousands of rare disease patients. The application of the described methodology facilitated the diagnosis of novel clinical cases, ranking phenotypes by locus specificity and reporting putative new clinical features that may suggest additional clinical follow-ups. In this work, the proof of concept developed over a set of novel clinical cases demonstrates that this network-based methodology might help improve the precision of patient clinical records and the characterization of rare syndromes

    Chemical priming enhances plant tolerance to salt stress

    Get PDF
    Salt stress severely limits the productivity of crop plants worldwide and its detrimental effects are aggravated by climate change. Due to a significant world population growth, agriculture has expanded to marginal and salinized regions, which usually render low crop yield. In this context, finding methods and strategies to improve plant tolerance against salt stress is of utmost importance to fulfill food security challenges under the scenario of the ever-increasing human population. Plant priming, at different stages of plant development, such as seed or seedling, has gained significant attention for its marked implication in crop salt-stress management. It is a promising field relying on the applications of specific chemical agents which could effectively improve plant salt-stress tolerance. Currently, a variety of chemicals, both inorganic and organic, which can efficiently promote plant growth and crop yield are available in the market. This review summarizes our current knowledge of the promising roles of diverse molecules/compounds, such as hydrogen sulfide (HS), molecular hydrogen, nitric oxide (NO), hydrogen peroxide (HO), melatonin, chitosan, silicon, ascorbic acid (AsA), tocopherols, and trehalose (Tre) as potential primers that enhance the salinity tolerance of crop plants

    Assessment of proline function in higher plants under extreme temperatures

    Get PDF
    Climate change and abiotic stress factors are key players in crop losses worldwide. Among which, extreme temperatures (heat and cold) disturb plant growth and development, reduce productivity and, in severe cases, lead to plant death. Plants have developed numerous strategies to mitigate the detrimental impact of temperature stress. Exposure to stress leads to the accumulation of various metabolites, e.g. sugars, sugar alcohols, organic acids and amino acids. Plants accumulate the amino acid ‘proline’ in response to several abiotic stresses, including temperature stress. Proline abundance may result from de novo synthesis, hydrolysis of proteins, reduced utilization or degradation. Proline also leads to stress tolerance by maintaining the osmotic balance (still controversial), cell turgidity and indirectly modulating metabolism of reactive oxygen species. Furthermore, the crosstalk of proline with other osmoprotectants and signalling molecules, e.g. glycine betaine, abscisic acid, nitric oxide, hydrogen sulfide, soluble sugars, helps to strengthen protective mechanisms in stressful environments. Development of less temperature-responsive cultivars can be achieved by manipulating the biosynthesis of proline through genetic engineering. This review presents an overview of plant responses to extreme temperatures and an outline of proline metabolism under such temperatures. The exogenous application of proline as a protective molecule under extreme temperatures is also presented. Proline crosstalk and interaction with other molecules is also discussed. Finally, the potential of genetic engineering of proline-related genes is explained to develop ‘temperature-smart’ plants. In short, exogenous application of proline and genetic engineering of proline genes promise ways forward for developing ‘temperature-smart’ future crop plants.Research of FJC is supported by a European Regional Development Fund co-financed grant from the Ministry of Economy and Competitiveness/Science and Innovation (PID2019-10103924GB-I00), Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (P18-FR-1359), Spain. This work was also supported by grants from Bill & Melinda Foundation (Tropical Legumes Project, OPP1114827), and Food Futures Institute of Murdoch University to RKV

    The EGR2 gene is involved in axonal Charcot-Marie-Tooth disease

    Full text link
    [EN] Background and purpose: A three-generation family affected by axonal Charcot-Marie-Tooth disease (CMT) was investigated with the aim of discovering genetic defects and to further characterize the phenotype. Methods: The clinical, nerve conduction studies and muscle magnetic resonance images of the patients were reviewed. A whole exome sequencing was performed and the changes were investigated by genetic studies, in silico analysis and luciferase reporter assays. Results: A novel c.1226G>A change (p.R409Q) in the EGR2 gene was identified. Patients presented with a typical, late-onset axonal CMT phenotype with variable severity that was confirmed in the ancillary tests. The in silico studies showed that the residue R409 is an evolutionary conserved amino acid. The p.R409Q mutation, which is predicted as probably damaging, would alter the conformation of the protein slightly and would cause a decrease of gene expression. Conclusions: This is the first report of an EGR2 mutation presenting as an axonal CMT phenotype with variable severity. This study broadens the phenotype of the EGR2-related neuropathies and suggests that the genetic testing of patients suffering from axonal CMT should include the EGR2 gene.This collaborative joint project is awarded by IRDiRC and funded by the Instituto de Salud Carlos III (ISCIII) - Subdireccion General de Evaluacion y Fomento de la Investigacion within the framework of the National R+D+I Plan (Grants IR11/TREAT-CMT, PI12/00946 and PI12/00453), co-funded with FEDER funds. C.E. has a "Miguel Servet' contract funded by the ISCIII and Centro de Investigacion Principe Felipe (CIPF) (Grant no. CPII14/00002). We are also grateful to Itziar Llopis for sample management.Sevilla, T.; Sivera, R.; Martínez-Rubio, D.; Lupo, V.; Chumillas, M.; Calpena-Corpas, E.; Dopazo, J.... (2015). The EGR2 gene is involved in axonal Charcot-Marie-Tooth disease. European Journal of Neurology. 22(12):1548-1555. https://doi.org/10.1111/ene.1278215481555221

    The BioJS article collection of open source components for biological data visualisation.

    Get PDF
    Data-driven research has gained momentum in the life sciences. Visualisation of these data is essential for quick generation of hypotheses and their translation into useful knowledge. BioJS is a new proposed standard for JavaScript-based components to visualise biological data. BioJS is an open source community project that to date provides 39 different components contributed by a global community. Here, we present the BioJS F1000Research collection series. A total of 12 components and a project status article are published in bulk. This collection does not intend to be an all-encompassing, comprehensive source of BioJS articles, but an initial set; future submissions from BioJS contributors are welcome

    Caracterización del material compuesto mármol-poliéster

    Get PDF
    In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza), químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue) chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior

    BioJS: An open source standard for biological visualisation - its status in 2014

    Get PDF
    BioJS is a community-based standard and repository of functional components to represent biological information on the web. The development of BioJS has been prompted by the growing need for bioinformatics visualisation tools to be easily shared, reused and discovered. Its modular architecture makes it easy for users to find a specific functionality without needing to know how it has been built, while components can be extended or created for implementing new functionality. The BioJS community of developers currently provides a range of functionality that is open access and freely available. A registry has been set up that categorises and provides installation instructions and testing facilities at http://www.ebi.ac.uk/tools/biojs/. The source code for all components is available for ready use at https://github.com/biojs/biojs
    corecore