12 research outputs found

    Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism

    Get PDF
    During the last decade, the scientific community has become interested in hybrid nanomaterials, especially the ones that combine gold nanoparticles with a second functional component. In this context, coordination polymers are materials that possess potential advantages over conventional inorganic nanomaterials and organic compounds such as chemical versatility, easy processability, high specific area, low toxicity, biodegradability and electronic and magnetic functionalities to name a few. In this manner, the wise integration of Au nanoparticles with coordination polymers in different types of nanostructures has allowed extending the scope of properties and applications of these systems, allowing also overcoming some of the limitations of Au nanoparticles for certain applications. Therefore, in this review, we discuss the different reported hybrid nanostructures based on the integration of colloidal Au nanoparticles with coordination polymers exhibiting either physical properties of interest (e.g. ferromagnetism, photo-magnetism, spin switching, etc.) or chemical properties (e.g. electrocatalysis). We have paid particular attention to the enhanced properties and the synergistic effects that can emerge from this association. Along this front, thanks to their improved and/or novel properties, these hybrid materials have become promising nanostructures for several applications, especially in biomedicine, catalysis, magnetism and sensing

    Design of Bistable Gold@Spin‐Crossover Core-Shell Nanoparticles Showing Large Electrical Responses for the Spin Switching

    Get PDF
    A simple chemical protocol to prepare core-shell gold@spin-crossover (Au@SCO) nanoparticles (NPs) based on the 1D spin-crossover [Fe(Htrz)2(trz)](BF4) coordination polymer is reported. The synthesis relies on a two-step approach consisting of a partial surface ligand substitution of the citrate-stabilized Au NPs followed by the controlled growth of a very thin layer of the SCO polymer. As a result, colloidally stable core@ shell spherical NPs with a Au core of ca. 12 nm and a thin SCO shell 4 nm thick, are obtained, exhibiting a narrow distribution in sizes. Differential scanning calorimetry proves that a cooperative spin transition in the range 340-360 K is maintained in these Au@SCO NPs, in full agreement with the values reported for pristine 4 nm SCO NPs. Temperature-dependent chargetransport measurements of an electrical device based on assemblies of these Au@SCO NPs also support this spin transition. Thus, a large change in conductance upon spin state switching, as compared with other memory devices based on the pristine SCO NPs, is detected. This results in a large improvement in the sensitivity of the device to the spin transition, with values for the ON/OFF ratio which are an order of magnitude better than the best ones obtained in previous SCO devices

    Plasmon-assisted spin transition in gold nanostar@spin crossover heterostructures

    Get PDF
    Aquí presentamos el diseño de nanopartículas core@shell formadas por un núcleo de nanoestrella de Au metálico y una capa cruzada de espín basada en el polímero de coordinación [Fe(Htrz)2(trz)](BF4). Este procedimiento es general y se ha extendido a otras morfologías metálicas (nanovarillas, nanotriángulos). Gracias al efecto fototérmico derivado de las propiedades plasmónicas de la nanoestrella de Au, el 60 % de los centros de hierro experimentan una transición de espín térmico dentro de la histéresis térmica provocada por una irradiación de baja intensidad con un láser de 808 nm. En comparación con otras morfologías de Au, la gran ventaja de la forma de nanoestrella surge de los puntos calientes creados en las ramas de la nanoestrella. Estos puntos calientes dan lugar a grandes absorciones NIR, lo que los convierte en nanoestructuras ideales para convertir de manera eficiente la luz en calor utilizando luz de baja energía, como la que proporciona un láser de 808 nm.03866

    The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles

    Get PDF
    We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum

    Enhancing the Electrocatalytic Activity and Stability of Prussian Blue Analogues Through the Introduction of Au Nanoparticles in a Core@shell Heterostructure

    No full text
    Prussian blue analogues (PBAs) have shown to be useful as earth-abundant electrocatalysts for the Oxygen Evolution Reaction (OER) in acidic, neutral and alkaline media. Still, further improvements can be achieved by increasing their electrical conductivity. In this work, we have obtained and fully characterized a variety of monodisperse core@shell hybrid nanoparticles of Au@PBA (PBA of NiIIFeII and CoIIFeII) with different shell sizes. Their electrocatalytical activity is evaluated by studying the OER, which is compared to the pristine PBA and other Au-PBA heterostructures. It was observed that the introduction in a core@shell of 5-10 % of Au in weight leads to an increment in the electroactive mass able to be reduced or oxidized and thus, to a higher number of sites capable to take part in the OER. This larger amount of electroactive sites leads to a significant decrease in the onset potential (a reduction of the onset potential up to 100 mV and an increase up to 420 % of the current density recorded at an overpotential of 350 mV), while the Tafel slope remains unchanged, suggesting that Au reduces the limiting potential of the catalyst with no variation in the reaction kinetics. These effects are not experimented in the other Au-PBA nanostructures mainly due to the lower contact between both compounds and the oxidation of Au. Hence, an Au core activates the PBA shell and increases the conductivity of the resulting hybrid while the PBA shell prevents Au oxidation. These improvements come from the strong synergistic effect existing in the core@shell structure and evidence the importance of the chemical design for preparing PBA-based nanostructures displaying better electrocatalytic performances and higher electrochemical stabilities

    Design of Bistable Gold@Spin-Crossover Core-Shell Nanoparticles Showing Large Electrical Responses for the Spin Switching

    No full text
    A simple protocol to prepare core-shell gold@spin-crossover (Au@SCO) nanoparticles (NPs) based on the 1D spin-crossover [Fe(Htrz)2(trz)](BF4) coordination polymer is reported. The synthesis relies on a two-step approach consisting on a partial surface ligand substitution of the citrate-stabilized Au NPs followed by the controlled growth of a very thin layer of the SCO polymer. As a result, colloidally stable core@shell spherical NPs of 19 nm in size exhibiting a narrow distribution in sizes have been obtained, revealing a switchable SCOshell of ca.4 nm. Temperature-dependent charge transport measurements of an electrical device based on assemblies of these Au@SCO NPs display well-defined, reproducible and sharp thermal hysteresis loops in the conductance near room temperature. This device is characterized both, by a large change in conductance upon spin state switching, and a remarkable transition abruptness, as compared with other memory devices based on the pristine SCO NPs. As a result, the sensitivity of the device to the spin transition is dramatically improved, with values for the ON/OFF ratio which are an order of magnitude better than the best ones obtained in previous SCO devices.</p

    Monodisperse Gold Nanotriangles: Size Control, Large-Scale Self-Assembly, and Performance in Surface-Enhanced Raman Scattering

    No full text
    Au nanotriangles display interesting nanoplasmonic features with potential application in various fields. However, such applications have been hindered by the lack of efficient synthetic methods yielding sufficient size and shape monodispersity, as well as by insufficient morphological stability. We present here a synthesis and purification protocol that efficiently addresses these issues. The size of the nanotriangles can be tuned within a wide range by simply changing the experimental parameters. The obtained monodispersity leads to extended self-assembly, not only on electron microscopy grids but also at the air–liquid interface, allowing transfer onto centimeter-size substrates. These extended monolayers show promising performance as surface-enhanced Raman scattering substrates, as demonstrated for thiophenol detection

    Engineering structural diversity in gold nanocrystals by ligand-mediated interface control

    No full text
    Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface-enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution, we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer–Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities. These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.ASTAR (Agency for Sci., Tech. and Research, S’pore)Published versio

    Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control

    No full text
    Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface-enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution, we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer–Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities. These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.ASTAR (Agency for Sci., Tech. and Research, S’pore)Published versio
    corecore