10 research outputs found

    Weak ferromagnetism with very large canting in a chiral lattice: (pyrimidine)2FeCl2

    Full text link
    The transition metal coordination compound (pyrimidine)2FeCl2 crystallizes in a chiral lattice, space group I 4_1 2 2 (or I4_3 2 2). Combined magnetization, Mossbauer spectroscopy and powder neutron diffraction studies reveal that it is a canted antiferromagnet below T_N = 6.4 K with an unusually large canting of the magnetic moments of 14 deg. from their general antiferromagnetic alignment, one of the largest reported to date. This results in weak ferromagnetism with a ferromagnetic component of 1 mu_B. The large canting is due to the interplay between the antiferromagnetic exchange interaction and the local single-ion anisotropy in the chiral lattice. The magnetically ordered structure of (pyrimidine)2FeCl2, however, is not chiral. The implications of these findings for the search of molecule based materials exhibiting chiral magnetic ordering is discussed.Comment: 6 pages, 5 figure

    Mössbauer thermal scan study of a spin crossover system

    Get PDF
    Programmable Velocity equipment was used to perform a Mössbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz)2(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.Facultad de Ciencias ExactasInstituto de Física La PlataInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Mössbauer thermal scan study of a spin crossover system

    Get PDF
    Programmable Velocity equipment was used to perform a Mössbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz)2(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.Facultad de Ciencias ExactasInstituto de Física La PlataInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    The Aging Imageomics Study: rationale, design and baseline characteristics of the study population

    No full text
    Biomarkers of aging are urgently needed to identify individuals at high risk of developing age-associated disease or disability. Growing evidence from population-based studies points to whole-body magnetic resonance imaging's (MRI) enormous potential for quantifying subclinical disease burden and for assessing changes that occur with aging in all organ systems. The Aging Imageomics Study aims to identify biomarkers of human aging by analyzing imaging, biopsychosocial, cardiovascular, metabolomic, lipidomic, and microbiome variables. This study recruited 1030 participants aged >= 50 years (mean 67, range 50-96 years) that underwent structural and functional MRI to evaluate the brain, large blood vessels, heart, abdominal organs, fat, spine, musculoskeletal system and ultrasonography to assess carotid intima-media thickness and plaques. Patients were notified of incidental findings detected by a certified radiologist when necessary. Extensive data were also collected on anthropometrics, demographics, health history, neuropsychology, employment, income, family status, exposure to air pollution and cardiovascular status. In addition, several types of samples were gathered to allow for microbiome, metabolomic and lipidomic profiling. Using big data techniques to analyze all the data points from biological phenotyping together with health records and lifestyle measures, we aim to cultivate a deeper understanding about various biological factors (and combinations thereof) that underlie healthy and unhealthy aging.Cardiovascular Aspects of Radiolog

    Magnetic Interactions in Molecules and Highly Correlated Materials: Physical Content, Analytical Derivation, and Rigorous Extraction of Magnetic Hamiltonians

    No full text

    Phytosynthesis of nanoparticles: concept, controversy and application

    No full text
    corecore