1,063 research outputs found

    Two-dimensional two-component plasma with adsorbing impurities

    Full text link
    We study the behavior of the two-dimensional two-component plasma in the presence of some adsorbing impurities. Using a solvable model, we find analytic expressions for the thermodynamic properties of the plasma such as the nn-body densities, the grand potential, and the pressure. We specialize in the case where there are one or two adsorbing point impurities in the plasma, and in the case where there are one or two parallel adsorbing lines. In the former case we study the effective interaction between the impurities, due to the charge redistribution around them. The latter case is a model for electrodes with adsorbing sticky sites on their surface

    Harnessing AI for Speech Reconstruction using Multi-view Silent Video Feed

    Full text link
    Speechreading or lipreading is the technique of understanding and getting phonetic features from a speaker's visual features such as movement of lips, face, teeth and tongue. It has a wide range of multimedia applications such as in surveillance, Internet telephony, and as an aid to a person with hearing impairments. However, most of the work in speechreading has been limited to text generation from silent videos. Recently, research has started venturing into generating (audio) speech from silent video sequences but there have been no developments thus far in dealing with divergent views and poses of a speaker. Thus although, we have multiple camera feeds for the speech of a user, but we have failed in using these multiple video feeds for dealing with the different poses. To this end, this paper presents the world's first ever multi-view speech reading and reconstruction system. This work encompasses the boundaries of multimedia research by putting forth a model which leverages silent video feeds from multiple cameras recording the same subject to generate intelligent speech for a speaker. Initial results confirm the usefulness of exploiting multiple camera views in building an efficient speech reading and reconstruction system. It further shows the optimal placement of cameras which would lead to the maximum intelligibility of speech. Next, it lays out various innovative applications for the proposed system focusing on its potential prodigious impact in not just security arena but in many other multimedia analytics problems.Comment: 2018 ACM Multimedia Conference (MM '18), October 22--26, 2018, Seoul, Republic of Kore

    Statistical properties of charged interfaces

    Full text link
    We consider the equilibrium statistical properties of interfaces submitted to competing interactions; a long-range repulsive Coulomb interaction inherent to the charged interface and a short-range, anisotropic, attractive one due to either elasticity or confinement. We focus on one-dimensional interfaces such as strings. Model systems considered for applications are mainly aggregates of solitons in polyacetylene and other charge density wave systems, domain lines in uniaxial ferroelectrics and the stripe phase of oxides. At zero temperature, we find a shape instability which lead, via phase transitions, to tilted phases. Depending on the regime, elastic or confinement, the order of the zero-temperature transition changes. Thermal fluctuations lead to a pure Coulomb roughening of the string, in addition to the usual one, and to the presence of angular kinks. We suggest that such instabilities might explain the tilting of stripes in cuprate oxides. The 3D problem of the charged wall is also analyzed. The latter experiences instabilities towards various tilted phases separated by a tricritical point in the elastic regime. In the confinement regime, the increase of dimensionality favors either the melting of the wall into a Wigner crystal of its constituent charges or a strongly inclined wall which might have been observed in nickelate oxides.Comment: 17 pages, 11 figure

    Both Grass Development Stage and Grazing Management Influence Milk Terpene Content

    Get PDF
    Terpenes are a wide group of molecules originating from plants’ secondary metabolism. Forage terpenes vary according to the botanical composition and in particular to the proportion of plants such as Apiaceae, Lamiaceae or Asteraceae. These molecules are considered effective milk markers for the presence of diversified forages in dairy cow diets. The variation in terpene content in the milk of grazing cows would depend on the period of development of terpene-rich plants and on the grazing management, whereby cows do or do not have the opportunity to choose and to modify the botanical composition of the ingested grass. The aim of this trial was to quantify the respective effects of grass development stage and grazing management on milk terpene content

    Casimir force between two ideal-conductor walls revisited

    Full text link
    The high-temperature aspects of the Casimir force between two neutral conducting walls are studied. The mathematical model of "inert" ideal-conductor walls, considered in the original formulations of the Casimir effect, is based on the universal properties of the electromagnetic radiation in the vacuum between the conductors, with zero boundary conditions for the tangential components of the electric field on the walls. This formulation seems to be in agreement with experiments on metallic conductors at room temperature. At high temperatures or large distances, at least, fluctuations of the electric field are present in the bulk and at the surface of a particle system forming the walls, even in the high-density limit: "living" ideal conductors. This makes the enforcement of the inert boundary conditions inadequate. Within a hierarchy of length scales, the high-temperature Casimir force is shown to be entirely determined by the thermal fluctuations in the conducting walls, modelled microscopically by classical Coulomb fluids in the Debye-H\"{u}ckel regime. The semi-classical regime, in the framework of quantum electrodynamics, is studied in the companion letter by P.R.Buenzli and Ph.A.Martin, cond-mat/0506363, Europhys.Lett.72, 42 (2005).Comment: 7 pages.One reference updated. Domain of validity of eq.(11) correcte

    Equilibrium correlations in charged fluids coupled to the radiation field

    Get PDF
    We provide an exact microscopic statistical treatment of particle and field correlations in a system of quantum charges in equilibrium with a classical radiation field. Using the Feynman-Kac-Ito representation of the Gibbs weight, the system of particles is mapped onto a collection of random charged wires. The field degrees of freedom can be integrated out, providing an effective pairwise magnetic potential. We then calculate the contribution of the transverse field coupling to the large-distance particle correlations. The asymptotics of the field correlations in the plasma are also exactly determined.Comment: 31 pages, 0 figures. PACS 05.30.-d, 05.40.-a, 11.10.Wx. Changes: Improved comparison with existing literature on field correlations. Added Concluding Remarks. References update

    The Ideal Conductor Limit

    Full text link
    This paper compares two methods of statistical mechanics used to study a classical Coulomb system S near an ideal conductor C. The first method consists in neglecting the thermal fluctuations in the conductor C and constrains the electric potential to be constant on it. In the second method the conductor C is considered as a conducting Coulomb system the charge correlation length of which goes to zero. It has been noticed in the past, in particular cases, that the two methods yield the same results for the particle densities and correlations in S. It is shown that this is true in general for the quantities which depend only on the degrees of freedom of S, but that some other quantities, especially the electric potential correlations and the stress tensor, are different in the two approaches. In spite of this the two methods give the same electric forces exerted on S.Comment: 19 pages, plain TeX. Submited to J. Phys. A: Math. Ge

    Effective Field Theory for Highly Ionized Plasmas

    Full text link
    We examine the equilibrium properties of hot, dilute, non-relativistic plasmas. The partition function and density correlation functions of a classical plasma with several species are expressed in terms of a functional integral over electrostatic potential distributions. The leading order, field-theoretic tree approximation automatically includes the effects of Debye screening. Subleading, one-loop corrections are easily evaluated. The two-loop corrections, however, have ultraviolet divergences. These correspond to the short-distance, logarithmic divergence which is encountered in the spatial integral of the Boltzmann exponential when it is expanded to third order in the Coulomb potential. Such divergences do not appear in the underlying quantum theory --- they are rendered finite by quantum fluctuations. We show how such divergences may be removed and the correct finite theory obtained by introducing additional local interactions in the manner of modern effective quantum field theories. We obtain explicit results for density-density correlation functions through two-loop order and thermodynamic quantities through three-loop order. The induced couplings are shown to obey renormalization group equations, and these equations are used to characterize all leading logarithmic contributions in the theory. A linear combination of pressure and energy and number densities is shown to be described by a field-theoretic anomaly. The effective theory allows us to evaluate very easily the algebraic long-distance decay of density correlation functions.Comment: 194 pages, uses elsevier & epsf.sty; final corrections include

    Fostering collective intelligence education

    Get PDF
    New educational models are necessary to update learning environments to the digitally shared communication and information. Collective intelligence is an emerging field that already has a significant impact in many areas and will have great implications in education, not only from the side of new methodologies but also as a challenge for education. This paper proposes an approach to a collective intelligence model of teaching using Internet to combine two strategies: idea management and real time assessment in the class. A digital tool named Fabricius has been created supporting these two elements to foster the collaboration and engagement of students in the learning process. As a result of the research we propose a list of KPI trying to measure individual and collective performance. We are conscious that this is just a first approach to define which aspects of a class following a course can be qualified and quantified.Postprint (published version

    Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq

    Get PDF
    Genome editing has shown great promise for clinical translation but also revealed the risk of genotoxicity caused by off-target effects of programmable nucleases. Here we describe chromosomal aberrations analysis by single targeted linker-mediated PCR sequencing (CAST-Seq), a preclinical assay to identify and quantify chromosomal aberrations derived from on-target and off-target activities of CRISPR-Cas nucleases or transcriptional activator-like effector nucleases (TALENs), respectively, in human hematopoietic stem cells (HSCs). Depending on the employed designer nuclease, CAST-Seq detected translocations in 0%–0.5% of gene-edited human CD34+ HSCs, and up to 20% of on-target loci harbored gross rearrangements. Moreover, CAST-Seq detected distinct types of chromosomal aberrations, such as homology-mediated translocations, that are mediated by homologous recombination and not off-target activity. CAST-Seq is a sensitive assay able to identify and quantify unintended chromosomal rearrangements in addition to the more typical mutations at off-target sites. CAST-Seq analyses may be particularly relevant for therapeutic genome editing to enable thorough risk assessment before clinical application of gene-edited products
    • …
    corecore