337 research outputs found

    Felip Palma, escriptora sense biografia

    Get PDF

    Tomás Roig i Llop, la recuperació de la infantesa a través de l'escriptura

    Get PDF

    Redox-Neutral Organometallic Elementary Steps at Bismuth: Catalytic Synthesis of Aryl Sulfonyl Fluorides

    Get PDF
    A Bi-catalyzed synthesis of sulfonyl fluorides from the corresponding (hetero)aryl boronic acids is presented. We demonstrate that the organobismuth(III) catalysts bearing a bis-aryl sulfone ligand backbone revolve through different canonical organometallic steps within the catalytic cycle without modifying the oxidation state. All steps have been validated, including the catalytic insertion of SO2 into Bi–C bonds, leading to a structurally unique O-bound bismuth sulfinate complex. The catalytic protocol affords excellent yields for a wide range of aryl and heteroaryl boronic acids, displaying a wide functional group tolerance

    Bismuth Redox Catalysis: An Emerging Main-Group Platform for Organic Synthesis

    Get PDF
    Bismuth has recently been shown to be able to maneuver between different oxidation states, enabling access to unique redox cycles that can be harnessed in the context of organic synthesis. Indeed, various catalytic Bi redox platforms have been discovered and revealed emerging opportunities in the field of main group redox catalysis. The goal of this perspective is to provide an overview of the synthetic methodologies that have been developed to date, which capitalize on the Bi redox cycling. Recent catalytic methods via low-valent Bi(II)/Bi(III), Bi(I)/Bi(III), and high-valent Bi(III)/Bi(V) redox couples are covered as well as their underlying mechanisms and key intermediates. In addition, we illustrate different design strategies stabilizing low-valent and high-valent bismuth species, and highlight the characteristic reactivity of bismuth complexes, compared to the lighter p-block and d-block elements. Although it is not redox catalysis in nature, we also discuss a recent example of non-Lewis acid, redox-neutral Bi(III) catalysis proceeding through catalytic organometallic steps. We close by discussing opportunities and future directions in this emerging field of catalysis. We hope that this Perspective will provide synthetic chemists with guiding principles for the future development of catalytic transformations employing bismuth

    High-valent bismuth redox catalysis

    Get PDF
    In the last years, bismuth has transitioned from being considered a mere Lewis acid catalyst to being recognised as an interesting redox catalyst for organic synthesis. A rational design of a ligand scaffold for the Bi center resulted in a robust catalytic system applicable to various bismuth redox processes

    (Hetero)aryl-S<sup>VI</sup> Fluorides: Synthetic Development and Opportunities

    Get PDF
    (Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities

    Synthesis and Structure of Mono-, Di-, and Trinuclear Fluorotriarylbismuthonium Cations

    Get PDF
    A series of cationic fluorotriarylbismuthonium salts bearing differently substituted aryl groups (Ar = 9,9-Me2-9H-xanthene, Ph, Mes, and 3,5-tBu-C6H3) have been synthesized and characterized. While the presence of simple phenyl substituents around the Bi center results in a polymeric structure with three Bi centers in the repeating monomer, substituents at the ortho- and meta-positions lead to cationic mono- and dinuclear fluorobismuthonium complexes, respectively. Preparation of all compounds is accomplished by fluoride abstraction from the parent triaryl Bi(V) difluorides using NaBArF (BArF- = B[C6H3-3,5-(CF3)2]4–). Structural parameters were obtained via single crystal X-ray diffraction (XRD), and their behavior in solution was studied by NMR spectroscopy. Trinuclear and binuclear complexes are held together through one bridging fluoride (μ-F) between two Bi(V) centers. In contrast, the presence of Me groups in both ortho-positions of the aryl ring provides the adequate steric encumbrance to isolate a unique mononuclear nonstabilized fluorotriarylbismuthonium cation. This compound features a distorted tetrahedral geometry and is remarkably stable at room temperature both in solution (toluene, benzene and THF) and in the solid state

    Dibismuthanes in catalysis: from synthesis and characterization to redox behavior towards oxidative cleavage of 1,2-diols

    Get PDF
    A family of aryl dinuclear bismuthane complexes has been successfully synthesized and characterized. The two bismuth centers are bonded to various xanthene-type backbones, which differ in ring-size and flexibility, resulting in complexes with different intramolecular Bi⋯Bi distances. Moreover, their pentavalent Bi(V) analogues have also been prepared and structurally characterized. Finally, the synergy between bismuth centers in catalysis has been studied by applying dinuclear bismuthanes 5–8 to the catalytic oxidative cleavage of 1,2-diols. Unfortunately, no synergistic effects were observed and the catalytic activities of dinuclear bismuthanes and triphenylbismuth are comparable

    Catalytic Activation of N<sub>2</sub>O at a Low-Valent Bismuth Redox Platform

    Get PDF
    Herein we present the catalytic activation of N2O at a BiI⇄BiIII redox platform. The activation of such a kinetically inert molecule was achieved by the use of bismuthinidene catalysts, aided by HBpin as reducing agent. The protocol features remarkably mild conditions (25 °C, 1 bar N2O), together with high turnover numbers (TON, up to 6700) and turnover frequencies (TOF). Analysis of the elementary steps enabled structural characterization of catalytically relevant intermediates after O-insertion, namely a rare arylbismuth oxo dimer and a unique monomeric arylbismuth hydroxide. This protocol represents a distinctive example of a main-group redox cycling for the catalytic activation of N2O

    Fluorination of arylboronic esters enabled by bismuth redox catalysis

    Get PDF
    Bismuth catalysis has traditionally relied on the Lewis acidic properties of the element in a fixed oxidation state. In this paper, we report a series of bismuth complexes that can undergo oxidative addition, reductive elimination, and transmetallation in a manner akin to transition metals. Rational ligand optimization featuring a sulfoximine moiety produced an active catalyst for the fluorination of aryl boronic esters through a bismuth (III)/bismuth (V) redox cycle. Crystallographic characterization of the different bismuth species involved, together with a mechanistic investigation of the carbon-fluorine bond-forming event, identified the crucial features that were combined to implement the full catalytic cycle
    • …
    corecore