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High-valent bismuth redox catalysis

In the last years, bismuth has transitioned from being considered a mere Lewis acid

catalyst to being recognised as an interesting redox catalyst for organic synthesis.

A rational design of a ligand scaffold for the Bi center resulted in a robust catalytic

system applicable to various bismuth redox processes.

ismuth is the last non-radio-

active element of the periodic

table.” In addition to its great
availability and economical cost,
certain Bi compounds have been
reported to be non-toxic and non-
carcinogenic.?’ The presence of Bi
in pharmacologically active in-
gredients such as the antiseptic
agent bibrocathol or the antacid
medication bismuth subsalicylate
exemplifies this low toxicity (Fig-
ure 1a).3) It is for these reasons that
Bi has been used to develop sus-
tainable chemical processes.¥

Organic syntheses

In organic syntheses, Bi'' salts
have been extensively studied as
soft Lewis-acid catalysts,? as well
as transmetalating reagents in tran-
sition-metal-catalysed  reactions.’”
These transformations are examples
of redox neutral reactivity and
mainly rely on the high Lewis acid-
ity of the Bi'"

its redox properties (Figure 1b).”)

center rather than in

Bi'! salts aren‘t often engaged in
catalytic redox processes. In a
series of seminal articles, Barton
demonstrated that certain orga-
nobismuth(V) compounds of the
general structure Ar,BiX, are
suited to undergo formal reductive
elimination or ligand coupling.y
Thermal decomposition of these
Bi" compounds can forge a wide
array of Ar-X bonds including
Ar-C, Ar-N, Ar-S and Ar-O (Fig-
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Fig. 1. a) Properties of bismuth and two famous compounds;

b) traditional Bi catalysis in organic synthesis: Lewis acid activation;
c) stoichiometric applications of the Bi"/Bi¥ redox couple in synthesis;
d) catalytic oxidation of 1,2-diols reported by Barton.
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ure 1c).?)

Despite this potential for organic
synthesis, the field remained dor-
mant for many years due to the
necessity of stoichiometric
amounts of Bi, which posed a chal-
lenge in terms of atom economy
and sustainability.

In the 1980s, Barton reported a
method for the cleavage of 1,2-diols
with N-bromosuccinimide, where
he suggested that an organobism-
uth complex (Ph,Bi) was acting as
a redox catalyst; yet no mechan-
istic studies on the intermediates
involved were reported (Figure
1d).)

During the 1990s and early
2000s, Suzuki," Akiba,'? Mukaiya-
ma'¥ and Finet'# among others ex-
plored the use of bismacyclic scaf-
folds to enhance the selectivity and
facilitate the reductive elimination
of C-C, C-O and C-N bonds em-
ploying Bi'"
an oxidant, usually meta-chlorope-
roxybenzoic acid (mCPBA). Ball
has recently employed a similar

species in presence of

strategy to develop an oxidative
a-arylation of phenols with arylbo-
ronic acids.’ In the latter report,
intense detail was devoted to pro-
viding a mechanistic picture of a
rather elusive fundamental step,
namely the transmetallation of

u centers.

arylboronic acids to Bi

These methodologies certainly
contributed to expanding the scope
of processes based on the Bi''/Bi¥
redox couple. But the need for stoi-
chiometric amounts of Bi and
strong oxidants to regenerate the

Bi" species limited its applicability
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in catalytic redox transformations.

Design and approach

With the aim of providing soluti-
ons to the aforementioned chal-
lenges and developing greener
and alternative transformations,

we have recently implemented a

research program that aims at the

development of bismuth redox
catalysis for the synthesis of or-
ganic compounds. To completely
unlock its potential, our research
programme was initially divided
into two main fronts: low-valent
bismuth redox catalysis, where

Bi' compounds are exploited; and

high-valent bismuth redox cataly-

sis, which uses the benefits of the

Bi""/BiY couple.

Low-valent  bismuth  redox
catalysis capitalises on the reduc-
ing power and nucleophilicity of
Bi' pincer complexes,'” which
proved to be excellent catalysts
for the transfer-hydrogenation of
azo- and nitroarenes,”) as well as
the activation and reduction of
N,0.®) Although rarely investi-
gated, low-valent Bi-catalysis
holds potential for synthetically
relevant transformations.

Applications in catalysis of the
Bi""/Bi¥ redox couple have been
limited by several factors, mainly
- the difficulty of accessing Bi¥

from Bi'l}

+ the ability of organobismuth
compounds to exchange and
scramble ligands in solution,

* the dynamic behaviour and un-
predictable geometries adopted
by Bi¥ compounds depending
on the ligands, and

- the large span of coordination
number of Bi cations.

We found initial inspiration in

Suzuki‘s report about a triaryl

Bi"' complex bearing a tethered

diphenylsulfone scaffold (Figure

2a)."V Upon oxidation with strong
oxidants, the corresponding Bi"
complexes were readily accessed

and thermally decomposed via a

formal reductive elimination to

selectively forge Ar-X bonds (X =
Cl, Br, I). This strategy has also
been applied by Fokin in the con-
text of triazole synthesis as a di-
versification point in click reac-
tions."?)

These studies established the
foundations of our approach and
were an excellent starting point
to study the feasibility of Bi"'!/Bi"
catalysis. Furthermore, the diphe-
nylsulfone scaffold forms a six-
membered bismacycle, which
helps to control its fluxional be-
haviour, thus resulting in high
selectivity for the pendant aryl
group. In addition to its struc-
tural advantages, we also hypoth-
esised that the O atoms on the
sulfone backbone could influence
the Bi center, hence providing an
additional modification site if
required.

To mimic transition metal
catalysis, a simple catalytic cycle
based on an hypothetical Bi""/Bi¥
couple for the formation of Ar—X
bonds was devised (Figure 2b).
For this cycle to be unlocked,
three fundamental organometal-
lic steps such as transmetalation
(TM), oxidative addition (OA),
and reductive elimination (RE)
should operate in synchrony.
With this design in mind, we fo-
cused on the oxidative coupling
of arylboronic acid derivatives
with partners that pose a chal-
lenge, such as fluoride or perflu-
oroalkylsulfonate salts (Figure
2¢).

Dissecting high-valent bismuth
redox catalysis

The fluorination of aromatic bo-
ronic acids is a highly desirable
transformation both in medicinal
and agrochemical sciences.?® Al-
though transition metals can
transform boronic acid deriva-
tives into aryl fluorides, the ma-
jority of such methods requires
stoichiometric amounts of
metal?”) Catalytic variants that
proceed via outer sphere one-
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Fig.2. High-valent bismuth catalysis. a) Inspiration: stoichio-
metric use of organobismuth for C-X bond formation. b) Cataly-
sis: hypothetic Bi"'/Bi" catalytic cycle. c) Benchmark reactions:
conversion of arylboronic acids to aryl fluorides and triflates.

electron processes, thus avoiding
the intermediacy of purely orga-

nometallic intermediates, are
rare.??)
We combined the high ox-

idation potential of Bi" species,
the lability of Bi-X bonds, and a
sulfone-based bismacycle to flu-
orinate aryl boronic esters.?
After a thorough screening of sul-
fone-based complexes, we ident-
ified a sulfoximine-bearing bis-
muth complex with a S=N-CF, (1)
moiety that proved key for the
reactivity (Figure 3).

Oxidation of (1) with XeF, pro-
vides (2z) in quantitative yields.
Thermolysis of (2) resulted in a
C(sp®)-F reductive elimination,
affording 94 % vyield of fluor-
obenzene (3) with concomitant
formation of the corresponding

Bi"-F (4). The milder N-flu-

oro-2,6-dichloropyridinium tetra-
fluoroborate (5) can replace XeF,,
providing 88 % vyield of fluor-
obenzene after the oxidation/re-
ductive elimination sequence. In
the latter thermolysis, a cationic
Bi¥ is postulated to be an inter-
(6), although further
studies to fully elucidate its exact

mediate

structure are currently underway.

Turning it catalytic

In the combination of aryl bo-
ronic acid derivatives and the
newly designed bismine ((7) and
(8), Figure 4, p. XX), additional
KF as provides
Ar-Bi"" compounds with various

an activator

functional groups on the aryl
ring. A two-step method for fluor-
ination is possible with (5) at
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Fig.3. C(sp?)-F reductive elimination from Bi" species.

60°C (Figure 4a, (9) — (14)). Since
the individual fundamental orga-
nometallic steps postulated in
Figure 2b had been demonstrated
to be feasible, we wanted to

merge them in one catalytic
cycle.

i |

INANUTSHELL

The recent advancements in bismuth redox
catalysis make it possible to develop che-
mical transformations using a sustainable,
cheap, and abundant element.

Bi is able to undergo transmetallation, oxi-

dative addition, and reductive elimination,

resulting in reactivity that outperforms and
reaches beyond the limits for the elements

of the d-block.

For broader use, mild oxidants and lower
catalyst loadings are required.
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Fig. 4. Fluorination of arylboronic acid derivatives

84% 45%

through bismuth redox pro-

cesses. a) Bismuth-mediated fluorination of arylboronic acids. b) Catalytic fluor-
ination of boronic esters through a Bi"'/Bi" redox cycle.

After optimisation of the reac-
tion conditions, a variety of aryl
boronic esters could be converted
to the corresponding aryl fluorides
using 10 mol% of (7) (Figure 4b).
Whereas substitution in para-posi-
tion posed no difficulties ((15), (16),
(18)), meta-substituted aryl boronic
esters were more difficult ((13),
(17)).

sterically

Polyaromatic systems and
crowded compounds
were also amenable for fluor-
ination ((12) and (19), respectively).
It is important to note that the
reaction does not proceed without
Bi.

So, Bi not only mimics organo-
metallic transition-metal-like be-
haviour, but also unveils alter-
native reactivity that is beyond
their scope. With a view towards
expanding this reactivity to other
coupling partners, an example by
Mukaiyama (Figure 5a) inspired
us, where a stoichiometric ox-

idative coupling between phe-

nylbismine species (20) and triflic
acid afforded phenyl triflate (22)
in 29 % yield.”**“) Presumably, this
reaction proceeded via the inter-
mediacy of (21), which delivers the
C-OTf product after
elimination/ligand coupling. This

reductive

example is a pioneer concept, as it
represents a unique example for
the construction of C(sp?*)-OTf
bonds through
This feature is currently inaccess-

cross-coupling.

ible to transition metals due to the
weak nucleophilic character of the
triflate ion.

Uncommon partners

It was hence envisaged that our
redox platform could provide a
catalytic variant that forges C-O
bonds using rather uncommon
coupling partners such as perflu-
oroalkylsulfonate salts
5b).2# Optimisation of the reac-

(Figure

tion conditions led us to use a bis-
mine catalyst featuring a dia-
backbone
with electron withdrawing CF,

rylsulfone decorated
groups (23), (5) as oxidant, sodium
phosphate as base, and 5 A mol-
ecular sieves. Under these condi-
tions, aryl boronic acids with vari-
ous substitution patterns were
converted to their corresponding
triflates using NaOTf as a coup-
ling partner ((25) - (29)). Replac-
ing NaOTf by KONf afforded even
better yields of the corresponding
aryl nonaflates ((30) - (34)).
Crucial information on the oper-
ating mechanism for the C-OTf
obtained
when phenylbismine (35) was ox-

bond formation was

idised with (5) in the presence of
NaOTf and formed phenyl triflate
(22) quantitatively (Figure 5c).
This outcome points to the
formation of a highly electro-
philic Bi" intermediate (36) bear-
ing a OTf moiety, in agreement
with the intermediate proposed
by Indeed, this
species was detected in high-res-

Mukaiyama.

olution = mass  spectrometry
(HRMS), suggesting its presence
the

formation. Together with pre-

during catalytic  trans-
liminary DFT studies, this indi-
cates that the reaction also fol-
lows a catalytic cycle based on
fundamental organometallic
steps, resembling the one in Fig-
ure 2. In this case, reductive elim-
ination is proposed to proceed
through a transition state invol-
ving a five-membered cycle, in
which the triflate ion acts as a
nucleophile to deliver the desired
product.

Recently, elements of the group
15 have been at the center of atten-
tion as they have been shown to be
applicable as catalysts in a myriad
of organic transformations.®s In-
deed, strategies exploiting the use
of their redox properties have re-
cently been reported,*® and even
one-electron processes for Bi are
beginning to have an impact in or-
ganic synthesis.””)  Multinuclear
complexes,® ligand design, and in-
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Fig. 5. a) Precedent: Bi-mediated C-OTf bond formation reported by Mukaiyama.
b) Catalytic triflation and nonaflation of arylboronic acids via bismuth redox catalysis.

c) Detection of high-valent intermediate by HRMS.

depth mechanistic studies will be

essential to fully understand the

underlying mechanisms of these

transformations, leading to further

discoveries through high-valent Bi

redox catalysis. [ |
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