24 research outputs found

    Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma

    Get PDF
    Objective: Sorafenib is effective in hepatocellular carcinoma (HCC), but patients ultimately present disease progression. Molecular mechanisms underlying acquired resistance are still unknown. Herein, we characterise the role of tumour-initiating cells (T-ICs) and signalling pathways involved in sorafenib resistance. Design: HCC xenograft mice treated with sorafenib (n=22) were explored for responsiveness (n=5) and acquired resistance (n=17). Mechanism of acquired resistance were assessed by: (1) role of T-ICs by in vitro sphere formation and in vivo tumourigenesis assays using NOD/SCID mice, (2) activation of alternative signalling pathways and (3) efficacy of anti-FGF and anti-IGF drugs in experimental models. Gene expression (microarray, quantitative real-time PCR (qRT-PCR)) and protein analyses (immunohistochemistry, western blot) were conducted. A novel gene signature of sorafenib resistance was generated and tested in two independent cohorts. Results: Sorafenib-acquired resistant tumours showed significant enrichment of T-ICs (164 cells needed to create a tumour) versus sorafenib-sensitive tumours (13 400 cells) and non-treated tumours (1292 cells), p<0.001. Tumours with sorafenib-acquired resistance were enriched with insulin-like growth factor (IGF) and fibroblast growth factor (FGF) signalling cascades (false discovery rate (FDR)<0.05). In vitro, cells derived from sorafenib-acquired resistant tumours and two sorafenib-resistant HCC cell lines were responsive to IGF or FGF inhibition. In vivo, FGF blockade delayed tumour growth and improved survival in sorafenib-resistant tumours. A sorafenib-resistance 175 gene signature was characterised by enrichment of progenitor cell features, aggressive tumorous traits and predicted poor survival in two cohorts (n=442 patients with HCC). Conclusion: Acquired resistance to sorafenib is driven by T-ICs with enrichment of progenitor markers and activation of IGF and FGF signalling. Inhibition of these pathways would benefit a subset of patients after sorafenib progression

    DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma

    Get PDF
    Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation-based prognostic signature using a training-validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine-phosphate-guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C-related HCC) and validation sets (n = 83; 47% alcohol-related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF-6] domain family member 1, insulin-like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2). Conclusions: A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA-based signatures indicating tumors with progenitor cell features

    Unique genomic profile of fibrolamellar hepatocellular carcinoma

    Get PDF
    BACKGROUND & AIMS: Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary hepatic cancer that develops in children and young adults without cirrhosis. Little is known about its pathogenesis, and it can be treated only with surgery. We performed an integrative genomic analysis of a large series of patients with FLC to identify associated genetic factors. METHODS: By using 78 clinically annotated FLC samples, we performed whole-transcriptome (n = 58), single-nucleotide polymorphism array (n = 41), and next-generation sequencing (n = 48) analyses; we also assessed the prevalence of the DNAJB1-PRKACA fusion transcript associated with this cancer (n = 73). We performed class discovery using non-negative matrix factorization, and functional annotation using gene-set enrichment analyses, nearest template prediction, ingenuity pathway analyses, and immunohistochemistry. The genomic identification of significant targets in a cancer algorithm was used to identify chromosomal aberrations, MuTect and VarScan2 were used to identify somatic mutations, and the random survival forest was used to determine patient prognoses. Findings were validated in an independent cohort. RESULTS: Unsupervised gene expression clustering showed 3 robust molecular classes of tumors: the proliferation class (51% of samples) had altered expression of genes that regulate proliferation and mammalian target of rapamycin signaling activation; the inflammation class (26% of samples) had altered expression of genes that regulate inflammation and cytokine enriched production; and the unannotated class (23% of samples) had a gene expression signature that was not associated previously with liver tumors. Expression of genes that regulate neuroendocrine function, as well as histologic markers of cholangiocytes and hepatocytes, were detected in all 3 classes. FLCs had few copy number variations; the most frequent were focal amplification at 8q24.3 (in 12.5% of samples), and deletions at 19p13 (in 28% of samples) and 22q13.32 (in 25% of samples). The DNAJB1-PRKACA fusion transcript was detected in 79% of samples. FLC samples also contained mutations in cancer-related genes such as BRCA2 (in 4.2% of samples), which are uncommon in liver neoplasms. However, FLCs did not contain mutations most commonly detected in liver cancers. We identified an 8-gene signature that predicted survival of patients with FLC. CONCLUSIONS: In a genomic analysis of 78 FLC samples, we identified 3 classes based on gene expression profiles. FLCs contain mutations and chromosomal aberrations not previously associated with liver cancer, and almost 80% contain the DNAJB1-PRKACA fusion transcript. By using this information, we identified a gene signature that is associated with patient survival time

    Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer

    Get PDF
    Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer1, 2, 3, 4, 5. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation6, 7, 8, 9, 10. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear. Here we show that mutant IDH blocks liver progenitor cells from undergoing hepatocyte differentiation through the production of 2HG and suppression of HNF-4α, a master regulator of hepatocyte identity and quiescence. Correspondingly, genetically engineered mouse models expressing mutant IDH in the adult liver show an aberrant response to hepatic injury, characterized by HNF-4α silencing, impaired hepatocyte differentiation, and markedly elevated levels of cell proliferation. Moreover, IDH and Kras mutations, genetic alterations that co-exist in a subset of human IHCCs4, 5, cooperate to drive the expansion of liver progenitor cells, development of premalignant biliary lesions, and progression to metastatic IHCC. These studies provide a functional link between IDH mutations, hepatic cell fate, and IHCC pathogenesis, and present a novel genetically engineered mouse model of IDH-driven malignancy

    MicroRNAs as cancer therapeutics : A step closer to clinical application

    No full text
    During the last decades, basic and translational research has enabled great improvements in the clinical management of cancer. However, scarcity of complete remission and many drug-induced toxicities are still a major problem in the clinics. Recently, microRNAs (miRNAs) have emerged as promising therapeutic targets due to their involvement in cancer development and progression. Their extraordinary regulatory potential, which enables regulation of entire signalling networks within the cells, makes them an interesting tool for the development of cancer therapeutics. In this review we will focus on miRNAs with experimentally proven therapeutic potential, and discuss recent advances in the technical development and clinical evaluation of miRNA-based therapeutic agents

    Functional In Vivo Screening Identifies microRNAs Regulating Metastatic Dissemination of Prostate Cancer Cells to Bone Marrow

    No full text
    Distant metastasis is the major cause of cancer-related deaths in men with prostate cancer (PCa). An in vivo functional screen was used to identify microRNAs (miRNAs) regulating metastatic dissemination of PCa cells. PC3 cells transduced with pooled miRZiP™ lentivirus library (anti-miRNAs) were injected intraprostatic to 13 NSG mice followed by targeted barcode/anti-miR sequencing. PCa cells in the primary tumours showed a homogenous pattern of anti-miRNAs, but different anti-miRNAs were enriched in liver, lung, and bone marrow, with anti-miR-379 highly enriched in the latter. The bone metastasis-promoting phenotype induced by decreased miR-379 levels was also confirmed in a less metastatic PCa cell line, 22Rv1, where all mice injected intracardially with anti-miR-379-22Rv1 cells developed bone metastases. The levels of miR-379 were found to be lower in bone metastases compared to primary tumours and non-cancerous prostatic tissue in a patient cohort. In vitro functional studies suggested that the mechanism of action was that reduced levels of miR-379 gave an increased colony formation capacity in conditions mimicking the bone microenvironment. In conclusion, our data suggest that specific miRNAs affect the establishment of primary tumours and metastatic dissemination, with a loss of miR-379 promoting metastases in bone

    Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma

    No full text
    Background & Aims In approximately 70% of patients with hepatocellular carcinoma (HCC) treated by resection or ablation, disease recurs within 5 years. Although gene expression signatures have been associated with outcome, there is no method to predict recurrence based on combined clinical, pathology, and genomic data (from tumor and cirrhotic tissue). We evaluated gene expression signatures associated with outcome in a large cohort of patients with early stage (Barcelona\u2013Clinic Liver Cancer 0/A), single-nodule HCC and heterogeneity of signatures within tumor tissues. Methods We assessed 287 HCC patients undergoing resection and tested genome-wide expression platforms using tumor (n = 287) and adjacent nontumor, cirrhotic tissue (n = 226). We evaluated gene expression signatures with reported prognostic ability generated from tumor or cirrhotic tissue in 18 and 4 reports, respectively. In 15 additional patients, we profiled samples from the center and periphery of the tumor, to determine stability of signatures. Data analysis included Cox modeling and random survival forests to identify independent predictors of tumor recurrence. Results Gene expression signatures that were associated with aggressive HCC were clustered, as well as those associated with tumors of progenitor cell origin and those from nontumor, adjacent, cirrhotic tissues. On multivariate analysis, the tumor-associated signature G3-proliferation (hazard ratio [HR], 1.75; P = .003) and an adjacent poor-survival signature (HR, 1.74; P = .004) were independent predictors of HCC recurrence, along with satellites (HR, 1.66; P = .04). Samples from different sites in the same tumor nodule were reproducibly classified. Conclusions We developed a composite prognostic model for HCC recurrence, based on gene expression patterns in tumor and adjacent tissues. These signatures predict early and overall recurrence in patients with HCC, and complement findings from clinical and pathology analyses

    Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma

    Full text link
    BACKGROUND & AIMS: According to the clonal model of tumor evolution, trunk alterations arise at early stages and are ubiquitous. Through the characterization of early stages of hepatocarcinogenesis, we aimed to identify trunk alterations in hepatocellular carcinoma (HCC) and study their intra- and inter-tumor distribution in advanced lesions. METHODS: A total of 151 samples representing the multistep process of hepatocarcinogenesis were analyzed by targeted-sequencing and a single nucleotide polymorphism array. Genes altered in early lesions (31 dysplastic nodules [DNs] and 38 small HCCs [sHCC]) were defined as trunk. Their distribution was explored in: a) different regions of large tumors (43 regions, 21 tumors), and b) different nodules of the same patient (39 tumors, 17 patients). Multinodular lesions were classified as intrahepatic metastases (IMs) or synchronous tumors based on chromosomal aberrations. RESULTS: TERT promoter mutations (10.5%) and broad copy-number aberrations in chromosomes 1 and 8 (3-7%) were identified as trunk gatekeepers in DNs and were maintained in sHCCs. Trunk drivers identified in sHCCs included TP53 (23%) and CTNNB1 (11%) mutations, and focal amplifications or deletions in known drivers (6%). Overall, TERT, TP53 and CTNNB1 mutations were the most frequent trunk events and at least one was present in 51% of sHCCs. Around 90% of mutations in these genes were ubiquitous among different regions of large tumors. In multinodular HCCs, 35% of patients harbored IMs; 85% of mutations in TERT, TP53 and/or CTNNB1 were retained in primary and metastatic tumors. CONCLUSIONS: Trunk events in early stages (TERT, TP53, CTNNB1 mutations) were ubiquitous across different regions of the same tumor and between primary and metastatic nodules in >85% of cases. This concept supports the knowledge that single biopsies would suffice to capture trunk mutations in HCC. LAY SUMMARY: Trunk alterations arise at early stages of cancer and are shared among all malignant cells of the tumor. In order to identify trunk alterations in HCC, we characterized early stages of hepatocarcinogenesis represented by dysplastic nodules and small lesions. Mutations in TERT, TP53 and CTNNB1 genes were the most frequent. Analyses in more advanced lesions showed that mutations in these same genes were shared between different regions of the same tumor and between primary and metastatic tumors, suggesting their trunk role in this disease
    corecore