8,635 research outputs found
Measuring Electric Fields From Surface Contaminants with Neutral Atoms
In this paper we demonstrate a technique of utilizing magnetically trapped
neutral Rb-87 atoms to measure the magnitude and direction of stray electric
fields emanating from surface contaminants. We apply an alternating external
electric field that adds to (or subtracts from) the stray field in such a way
as to resonantly drive the trapped atoms into a mechanical dipole oscillation.
The growth rate of the oscillation's amplitude provides information about the
magnitude and sign of the stray field gradient. Using this measurement
technique, we are able to reconstruct the vector electric field produced by
surface contaminants. In addition, we can accurately measure the electric
fields generated from adsorbed atoms purposely placed onto the surface and
account for their systematic effects, which can plague a precision
surface-force measurement. We show that baking the substrate can reduce the
electric fields emanating from adsorbate, and that the mechanism for reduction
is likely surface diffusion, not desorption.Comment: 7 pages, 6 figures, published in Physical Review
The Structure Of The Accretion Disk In The ADC Source 4U 1822-371
The low-mass X-ray binary (LMXB) 4U 1822-371 has an accretion disk corona (ADC) that scatters X-ray photons from the inner disk and neutron star out of the line of sight. It has a high orbital inclination and the secondary star eclipses the disk and ADC. We have obtained new time-resolved UV spectrograms and V- and I-band photometry of 4U 1822-371. The large quadratic term in our new optical eclipse ephemeris confirms that the system has an extremely high rate of mass transfer and mass accretion. The C IV lambda lambda = 1548 - 1550 angstrom emission line has a half width of similar to 4400 km/s, indicating a strong, high velocity wind is being driven off the accretion disk. Near the disk the wind is optically thick in UV, V, and J and the eclipse analysis shows that in V and J the optically thick wind extends nearly to the outer edge of the disk. The ADC must also extend vertically to a height equal to approximately half the disk radius.Astronom
Recent Experiments with Bose-Condensed Gases at JILA
We consider a binary mixture of two overlapping Bose-Einstein condensates in
two different hyperfine states of \Rb87 with nearly identical magnetic moments.
Such a system has been simply realized through application of radiofrequency
and microwave radiation which drives a two-photon transition between the two
states. The nearly identical magnetic moments afford a high degree of spatial
overlap, permitting a variety of new experiments. We discuss some of the
conditions under which the magnetic moments are identical, with particular
emphasis placed on the requirements for a time-averaged orbiting potential
(TOP) magnetic trap.Comment: 9 pages, 5 figures; corrected post-publication editio
Noise-induced volatility of collective dynamics
"Noise-induced volatility" refers to a phenomenon of increased level of
fluctuations in the collective dynamics of bistable units in the presence of a
rapidly varying external signal, and intermediate noise levels. The
archetypical signature of this phenomenon is that --beyond the increase in the
level of fluctuations-- the response of the system becomes uncorrelated with
the external driving force, making it different from stochastic resonance.
Numerical simulations and an analytical theory of a stochastic dynamical
version of the Ising model on regular and random networks demonstrate the
ubiquity and robustness of this phenomenon, which is argued to be a possible
cause of excess volatility in financial markets, of enhanced effective
temperatures in a variety of out-of-equilibrium systems and of strong selective
responses of immune systems of complex biological organisms. Extensive
numerical simulations are compared with a mean-field theory for different
network topologies
Electronic structure of nanoscale iron oxide particles measured by scanning tunneling and photoelectron spectroscopies
We have investigated the electronic structure of nano-sized iron oxide by
scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as by
photoelectron spectroscopy. Nano particles were produced by thermal treatment
of Ferritin molecules containing a self-assembled core of iron oxide. Depending
on the thermal treatment we were able to prepare different phases of iron oxide
nanoparticles resembling gamma-Fe2O3, alpha-Fe2O3, and a phase which apparently
contains both gamma-Fe2O3 and alpha-Fe2O3. Changes to the electronic structure
of these materials were studied under reducing conditions. We show that the
surface band gap of the electronic excitation spectrum can differ from that of
bulk material and is dominated by surface effects.Comment: REVTeX, 6 pages, 10 figures, submitted to PR
Measurement of the Temperature Dependence of the Casimir-Polder Force
We report on the first measurement of a temperature dependence of the
Casimir-Polder force. This measurement was obtained by positioning a nearly
pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate
and exciting its dipole oscillation. Changes in the collective oscillation
frequency of the magnetically trapped atoms result from spatial variations in
the surface-atom force. In our experiment, the dielectric substrate is heated
up to 605 K, while the surrounding environment is kept near room temperature
(310 K). The effect of the Casimir-Polder force is measured to be nearly 3
times larger for a 605 K substrate than for a room-temperature substrate,
showing a clear temperature dependence in agreement with theory.Comment: 4 pages, 4 figures, published in Physical Review Letter
Loglinear Models for Capture-Recapture Experiments on Open Populations
25 pages, 1 article*Loglinear Models for Capture-Recapture Experiments on Open Populations* (Cormack, R. M.) 25 page
Output coupling of a Bose-Einstein condensate formed in a TOP trap
Two distinct mechanisms are investigated for transferring a pure 87Rb
Bose-Einstein condensate in the F = 2, mF = 2 state into a mixture of
condensates in all the mF states within the F = 2 manifold. Some of these
condensates remain trapped whilst others are output coupled in the form of an
elementary pulsed atom laser. Here we present details of the condensate
preparation and results of the two condensate output coupling schemes. The
first scheme is a radio frequency technique which allows controllable transfer
into available mF states, and the second makes use of Majorana spin flips to
equally populate all the manifold sub-states.Comment: 12 Pages, 5 Figures, submitted to J. Phys.
Exact Solution of Two-Species Ballistic Annihilation with General Pair-Reaction Probability
The reaction process is modelled for ballistic reactants on an
infinite line with particle velocities and and initially
segregated conditions, i.e. all A particles to the left and all B particles to
the right of the origin. Previous, models of ballistic annihilation have
particles that always react on contact, i.e. pair-reaction probability .
The evolution of such systems are wholly determined by the initial distribution
of particles and therefore do not have a stochastic dynamics. However, in this
paper the generalisation is made to , allowing particles to pass through
each other without necessarily reacting. In this way, the A and B particle
domains overlap to form a fluctuating, finite-sized reaction zone where the
product C is created. Fluctuations are also included in the currents of A and B
particles entering the overlap region, thereby inducing a stochastic motion of
the reaction zone as a whole. These two types of fluctuations, in the reactions
and particle currents, are characterised by the `intrinsic reaction rate', seen
in a single system, and the `extrinsic reaction rate', seen in an average over
many systems. The intrinsic and extrinsic behaviours are examined and compared
to the case of isotropically diffusing reactants.Comment: 22 pages, 2 figures, typos correcte
- …