646 research outputs found
Visible and Ultraviolet Laser Spectroscopy of ThF
The molecular ion ThF is the species to be used in the next generation of
search for the electron's Electric Dipole Moment (eEDM) at JILA. The
measurement requires creating molecular ions in the eEDM sensitive state, the
rovibronic ground state , , . Survey spectroscopy of
neutral ThF is required to identify an appropriate intermediate state for a
Resonance Enhanced Multi-Photon Ionization (REMPI) scheme that will create ions
in the required state. We perform broadband survey spectroscopy (from 13000 to
44000~cm) of ThF using both Laser Induced Fluorescence (LIF) and
REMPI spectroscopy. We observe and assign 345 previously unreported vibronic
bands of ThF. We demonstrate 30\% efficiency in the production of ThF ions
in the eEDM sensitive state using the [32.85] intermediate
state. In addition, we propose a method to increase the aforementioned
efficiency to 100\% by using vibrational autoionization via
core-nonpenetrating Rydberg states, and discuss theoretical and experimental
challenges. Finally, we also report 83 vibronic bands of an impurity species,
ThO.Comment: 49 pages, 7 figure
Laser-induced fluorescence studies of HfF+ produced by autoionization
Autoionization of Rydberg states of HfF, prepared using the optical-optical
double resonance (OODR) technique, holds promise to create HfF+ in a particular
Zeeman level of a rovibronic state for an electron electric dipole moment
(eEDM) search. We characterize a vibronic band of Rydberg HfF at 54 cm-1 above
the lowest ionization threshold and directly probe the state of the ions formed
from this vibronic band by performing laser-induced fluorescence (LIF) on the
ions. The Rydberg HfF molecules show a propensity to decay into only a few ion
rotational states of a given parity and are found to preserve their orientation
qualitatively upon autoionization. We show empirically that we can create 30%
of the total ion yield in a particular |J+,M+> state and present a simplified
model describing autoionization from a given Rydberg state that assumes no
angular dynamics.Comment: 8 pages, 5 figure
Action Anthropology and Pedagogy: University-Community Collaborations in Setting Policy
This article describes a student-led, community-participatory project focused on reducing the burden of childhood lead poisoning in rental housing. A multidisciplinary group of students and faculty worked with community members. We compiled the social, public health, economic, and policy information on the human and fiscal costs of childhood lead poisoning. This analysis was done for community advocates to use to persuade policymakers to enact a local law strengthening the prevention of childhood lead poisoning in rental property. In conducting this work, the students gained experience in qualitative research methods, quantitative data analysis, the health consequences of lead exposure, health policy, urban health, science writing, and public presentation
Cell Death of Melanophores in Zebrafish trpm7 Mutant Embryos Depends on Melanin Synthesis
Transient receptor potential melastatin 7 (TRPM7) is a broadly expressed, non-selective cation channel. Studies in cultured cells implicate TRPM7 in regulation of cell growth, spreading, and survival. However, zebrafish trpm7 homozygous mutants display death of melanophores and temporary paralysis, but no gross morphological defects during embryonic stages. This phenotype implies that melanophores are unusually sensitive to decreases in Trpm7 levels, a hypothesis we investigate here. We find that pharmacological inhibition of caspases does not rescue melanophore viability in trpm7 mutants, implying that melanophores die by a mechanism other than apoptosis. Consistent with this possibility, ultrastructural analysis of dying melanophores in trpm7 mutants reveals abnormal melanosomes and evidence of a ruptured plasma membrane, indicating that cell death occurs by necrosis. Interestingly, inhibition of melanin synthesis largely prevents melanophore cell death in trpm7 mutants. These results suggest that melanophores require Trpm7 in order to detoxify intermediates of melanin synthesis. We find that unlike TRPM1, TRPM7 is expressed in human melanoma cell lines, indicating that these cells may also be sensitized to reduction of TRPM7 levels
Differentiation of Zebrafish Melanophores Depends on Transcription Factors AP2 Alpha and AP2 Epsilon
A model of the gene-regulatory-network (GRN), governing growth, survival, and differentiation of melanocytes, has emerged from studies of mouse coat color mutants and melanoma cell lines. In this model, Transcription Factor Activator Protein 2 alpha (TFAP2A) contributes to melanocyte development by activating expression of the gene encoding the receptor tyrosine kinase Kit. Next, ligand-bound Kit stimulates a pathway activating transcription factor Microphthalmia (Mitf), which promotes differentiation and survival of melanocytes by activating expression of Tyrosinase family members, Bcl2, and other genes. The model predicts that in both Tfap2a and Kit null mutants there will be a phenotype of reduced melanocytes and that, because Tfap2a acts upstream of Kit, this phenotype will be more severe, or at least as severe as, in Tfap2a null mutants in comparison to Kit null mutants. Unexpectedly, this is not the case in zebrafish or mouse. Because many Tfap2 family members have identical DNAβbinding specificity, we reasoned that another Tfap2 family member may work redundantly with Tfap2a in promoting Kit expression. We report that tfap2e is expressed in melanoblasts and melanophores in zebrafish embryos and that its orthologue, TFAP2E, is expressed in human melanocytes. We provide evidence that Tfap2e functions redundantly with Tfap2a to maintain kita expression in zebrafish embryonic melanophores. Further, we show that, in contrast to in kita mutants where embryonic melanophores appear to differentiate normally, in tfap2a/e doubly-deficient embryonic melanophores are small and under-melanized, although they retain expression of mitfa. Interestingly, forcing expression of mitfa in tfap2a/e doubly-deficient embryos partially restores melanophore differentiation. These findings reveal that Tfap2 activity, mediated redundantly by Tfap2a and Tfap2e, promotes melanophore differentiation in parallel with Mitf by an effector other than Kit. This work illustrates how analysis of single-gene mutants may fail to identify steps in a GRN that are affected by the redundant activity of related proteins
Can Three-Body Recombination Purify a Quantum Gas?
Three-body recombination in quantum gases is traditionally associated with heating, but it was recently found that it can also cool the gas. We show that in a partially condensed three-dimensional homogeneous Bose gas three-body loss could even purify the sample, that is, reduce the entropy per particle and increase the condensed fraction Ξ·. We predict that the evolution of Ξ· under continuous three-body loss can, depending on small changes in the initial conditions, exhibit two qualitatively different behaviors-if it is initially above a certain critical value, Ξ· increases further, whereas clouds with lower initial Ξ· evolve towards a thermal gas. These dynamical effects should be observable under realistic experimental conditions
Vesicular monoamine transporter 2 (SLC18A2) regulates monoamine turnover and brain development in zebrafish
Aim We aimed at identifying potential roles of vesicular monoamine transporter 2, also known as Solute Carrier protein 18 A2 (SLC18A2) (hereafter, Vmat2), in brain monoamine regulation, their turnover, behaviour and brain development using a novel zebrafish model. Methods A zebrafish strain lacking functional Vmat2 was generated with the CRISPR/Cas9 system. Larval behaviour and heart rate were monitored. Monoamines and their metabolites were analysed with high-pressure liquid chromatography. Amine synthesising and degrading enzymes, and genes essential for brain development, were analysed with quantitative PCR, in situ hybridisation and immunocytochemistry. Results The 5-bp deletion in exon 3 caused an early frameshift and was lethal within 2 weeks post-fertilisation. Homozygous mutants (hereafter, mutants) displayed normal low locomotor activity during night-time but aberrant response to illumination changes. In mutants dopamine, noradrenaline, 5-hydroxytryptamine and histamine levels were reduced, whereas levels of dopamine and 5-hydroxytryptamine metabolites were increased, implying elevated monoamine turnover. Consistently, there were fewer histamine, 5-hydroxytryptamine and dopamine immunoreactive cells. Cellular dopamine immunostaining, in wild-type larvae more prominent in tyrosine hydroxylase 1 (Th1)-expressing than in Th2-expressing neurons, was absent in mutants. Despite reduced dopamine levels, mutants presented upregulated dopamine-synthesising enzymes. Further, in mutants the number of histidine decarboxylase-expressing neurons was increased, notch1a and pax2a were downregulated in brain proliferative zones. Conclusion Lack of Vmat2 increases monoamine turnover and upregulates genes encoding amine-synthesising enzymes, including histidine decarboxylase. Notch1a and pax2a, genes implicated in stem cell development, are downregulated in mutants. The zebrafish vmat2 mutant strain may be a useful model to study how monoamine transport affects brain development and function, and for use in drug screening.Peer reviewe
Ground State Asymptotics of a Dilute, Rotating Gas
We investigate the ground state properties of a gas of interacting particles
confined in an external potential in three dimensions and subject to rotation
around an axis of symmetry. We consider the so-called Gross-Pitaevskii (GP)
limit of a dilute gas. Analyzing both the absolute and the bosonic ground state
of the system we show, in particular, their different behavior for a certain
range of parameters. This parameter range is determined by the question whether
the rotational symmetry in the minimizer of the GP functional is broken or not.
For the absolute ground state, we prove that in the GP limit a modified GP
functional depending on density matrices correctly describes the energy and
reduced density matrices, independent of symmetry breaking. For the bosonic
ground state this holds true if and only if the symmetry is unbroken.Comment: LaTeX2e, 37 page
Optical and UV Light Curves of the Accretion Disk Corona Source 4U 1822-371
The eclipsing low-mass X-ray binary 4U is the prototypical accretion disk
corona (ADC) system. We have obtained new time-resolved UV spectrograms of 4U
with the Hubble Space Telescope and new V- and J-band light curves with the
1.3-m SMARTS telescope at CTIO. We present an updated ephemeris for the times
of the optical/UV eclipses. Model light curves do not give acceptable fits to
the UV eclipses unless the models include an optically-thick ADC.Comment: 3 pages, 2 figures, from A Population Explosion: The Nature and
Evolution of X-ray Binaries in Diverse Environment
Action Anthropology and Pedagogy: University-Community Collaborations in Setting Policy
This article describes a student-led, community-participatory project focused on reducing the burden of childhood lead poisoning in rental housing. A multidisciplinary group of students and faculty worked with community members. We compiled the social, public health, economic, and policy information on the human and fiscal costs of childhood lead poisoning. This analysis was done for community advocates to use to persuade policymakers to enact a local law strengthening the prevention of childhood lead poisoning in rental property. In conducting this work, the students gained experience in qualitative research methods, quantitative data analysis, the health consequences of lead exposure, health policy, urban health, science writing, and public presentation
- β¦