27 research outputs found

    Progressive retinal degeneration and glial activation in the Cln6nclf mouse model of neuronal ceroid lipofuscinosis : a beneficial effect of DHA and Curcumin supplementation

    Get PDF
    Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA), could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds

    Roadmap for Optical Tweezers 2023

    Get PDF
    Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nanoparticle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration

    Cre recombinase expression or topical tamoxifen treatment do not affect retinal structure and function, neuronal vulnerability or glial reactivity in the mouse eye

    Get PDF
    Mice with a constitutive or tamoxifen-induced Cre recombinase (Cre) expression are frequently used research tools to allow the conditional deletion of target genes via the Cre-loxP system. Here we analyzed for the first time in a comprehensive and comparative way, whether retinal Cre expression or topical tamoxifen treatment itself would cause structural or functional changes, including changes in the expression profiles of molecular markers, glial reactivity and photoreceptor vulnerability. To this end, we characterized the transgenic alpha-Cre, Lmop-Cre and the tamoxifen-inducible CAGG-CreER (TM) mouse lines, all having robust Cre expression in the neuronal retina. In addition, we characterized the effects of topical tamoxifen treatment itself in wildtype mice. We performed morphometric analyses, immunohistochemical staining, in vivo ERG and angiography analyses and realtime RT-PCR analyses. Furthermore, the influence of Cre recombinase or topical tamoxifen exposure on neuronal vulnerability was studied by using light damage as a model for photoreceptor degeneration. Taken together, neither the expression of Cre, nor topical tamoxifen treatment caused detectable changes in retinal structure and function, the expression profiles of investigated molecular markers, glial reactivity and photoreceptor vulnerability. We conclude that the Cre-loxP system and its induction through tamoxifen is a safe and reliable method to delete desired target genes in the neural retina. (C) 2016 IBRO. Published by Elsevier Ltd. All rights reserved

    Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    No full text
    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase(-/-) mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase(-/-) mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase(-/-) mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. (C) 2015 Elsevier Inc. All rights reserved

    Spectral Domain Optical Coherence Tomography Allows the Unification of Clinical Decision Making for the Evaluation of Choroidal Neovascularization Activity

    No full text
    Purpose: This prospective observational clinical study investigated the benefits of spectral domain optical coherence tomography for specialists and residents in the management of neovascular age-related macular degeneration (AMD). Procedures: The study involved 49 eyes of 44 patients. Patients were advised to present for reevaluation 4 weeks after the administration of the loading dose of vascular endothelial growth factor (VEGF)-inhibitors (3 intravitreal injections every 4 weeks after diagnosis). They were examined by residents (3-4 years' experience in ophthalmology) and specialists (> 5 years' experience). Each examiner evaluated the clinical situation and the spectral domain optical coherence tomography (SD-OCT) scan. After each evaluation, the examiners independently stated if further anti-VEGF treatment was recommended. The "true outcome" was defined as the specialist decision based on clinical evaluation and SD-OCT. Results: Specialists and residents did not significantly differ in their accuracy in deciding on the correct treatment (p = 0.705 and p = 1), with or without the aid of SD-OCT. Both groups benefited from using SD-OCT to support their recommendations (p = 0.001 and p = 0.0002) and achieved a similar level of accuracy (p = 1 for difference). Conclusions: Residents benefited more than specialists by using SD-OCT to substantiate their recommendation on how to manage exudative AMD after the administration of the loading dose. (C) 2018 S. Karger AG, Basel

    Mutated olfactomedin 1 in the interphotoreceptor matrix of the mouse retina causes functional deficits and vulnerability to light damage

    No full text
    Olfactomedin 1 (OLFM1) is a secreted glycoprotein and member of the olfactomedin protein family, which is preferentially expressed in various areas throughout the central nervous system. To learn about the functional properties of OLFM1 in the eye, we investigated its localization in the mouse and pig eye. In addition, we analyzed the ocular phenotype of Olfm1 mutant mice in which 52 amino acids were deleted in the central part (M2 region) of OLFM1. OLFM1 was detected in cornea, sclera, retina, and optic nerve of both wild-type and Olfm1 mutant littermates. By immunohistochemistry and double labeling with the lectin peanut agglutinin, OLFM1 was found in the interphotoreceptor matrix (IPM) of mouse and pig retina where it was directly localized to the inner segments of photoreceptors. Western blotting confirmed the presence of the OLFM1 isoforms pancortin 1 (BMY) and pancortin 2 (BMZ) in the IPM. The retinal phenotype of Olfm1 mutant mice did not obviously differ from that of wild-type littermates. In addition, outer nuclear layer (ONL) and total retinal thickness were not different, and the same was true for the area of the optic nerve in cross sections. Functional changes were observed though by electroretinography, which showed significantly lower a- and b-wave amplitudes in Olfm1 mutant mice when compared to age-matched wild-type mice. When light damage experiments were performed as an experimental paradigm of photoreceptor apoptosis, significantly more TUNEL-positive cells were observed in Olfm1 mutant mice 30 h after light exposure. One week after light exposure, the ONL was significantly thinner in Olfm1 mutant mice than in wild-type littermates indicating increased photoreceptor loss. No differences were observed when rhodopsin turnover or ERK1/2 signaling was investigated. We conclude that OLFM1 is a newly identified IPM molecule that serves an important role for photoreceptor homeostasis, which is significantly compromised in the eyes of Olfm1 mutant mice

    Suppression of SNARE-dependent exocytosis in retinal glial cells and its effect on ischemia-induced neurodegeneration

    Get PDF
    Nervous tissue is characterized by a tight structural association between glial cells and neurons. It is well known that glial cells support neuronal functions, but their role under pathologic conditions is less well understood. Here, we addressed this question in vivo using an experimental model of retinal ischemia and transgenic mice for glia-specific inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent exocytosis. Transgene expression reduced glutamate, but not ATP release from single Muller cells, impaired glial volume regulation under normal conditions and reduced neuronal dysfunction and death in the inner retina during the early stages of ischemia. Our study reveals that the SNARE-dependent exocytosis in glial cells contributes to neurotoxicity during ischemia in vivo and suggests glial exocytosis as a target for therapeutic approaches

    Age-dependent thinning of retinal and photoreceptor layers in CLN6<i><sup>nclf</sup></i> retinas.

    No full text
    <p>Anterior and posterior retinal areas were divided into ten sections with the optic nerve head as reference. A. Quantification of whole retinal thickness of CLN6<i><sup>nclf</sup></i> retinas compared to wild-type controls (mean ± SD). B. Quantification of photoreceptor layer thickness compared to wild-type controls (mean ± SD). *<i>p</i><0.05; **<i>p</i><0.01; ***<i>p</i><0.001 CLN6<i><sup>nclf</sup></i> vs. age-matched wild-type mice, n = 4 animals per age group, two-way ANOVA followed by Bonferroni post-test.</p

    Early induction of stress response and glial marker transcripts in degenerating CLN6<i><sup>nclf</sup></i> retinas.

    No full text
    <p>A-F. Quantitative real-time RT-PCR expression analysis of CLN6<i><sup>nclf</sup></i> retinas compared to age-matched wild-type controls. Relative mRNA levels were analyzed for NCLF (A), CD95 (B), GFAP (C), EDN2 (D), C1Qa (E), and EGR1 (F). mRNA expression was normalized to the reference gene ATP5B and graphed relative to age-matched wild-type (± SD). *<i>p</i><0.05; **<i>p</i><0.01; ***<i>p</i><0.001, n = 7–10 animals per age, two-way ANOVA followed by Bonferroni post test.</p
    corecore