628 research outputs found
Recommended from our members
Relationship between total, axial and peripheral bone mineral density, lifetime milk consumption and lifetime physical activity in elderly mothers and their premenopausal daughters
Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions.
Folate is essential for nucleotide synthesis, DNA replication, and methyl group supply. Low-folate status has been associated with increased risks of several cancer types, suggesting a chemopreventive role of folate. However, recent findings on giving folic acid to patients with a history of colorectal polyps raise concerns about the efficacy and safety of folate supplementation and the long-term health effects of folate fortification. Results suggest that undetected precursor lesions may progress under folic acid supplementation, consistent with the role of folate role in nucleotide synthesis and cell proliferation. To better understand the possible trade-offs between the protective effects due to decreased mutation rates and possibly concomitant detrimental effects due to increased cell proliferation of folic acid, we used a biologically based mathematical model of colorectal carcinogenesis. We predict changes in cancer risk based on timing of treatment start and the potential effect of folic acid on cell proliferation and mutation rates. Changes in colorectal cancer risk in response to folic acid supplementation are likely a complex function of treatment start, duration, and effect on cell proliferation and mutations rates. Predicted colorectal cancer incidence rates under supplementation are mostly higher than rates without folic acid supplementation unless supplementation is initiated early in life (before age 20 years). To the extent to which this model predicts reality, it indicates that the effect on cancer risk when starting folic acid supplementation late in life is small, yet mostly detrimental. Experimental studies are needed to provide direct evidence for this dual role of folate in colorectal cancer and to validate and improve the model predictions
Physical Exercise Training versus Relaxation in Allogeneic stem cell transplantation (PETRA Study) – Rationale and design of a randomized trial to evaluate a yearlong exercise intervention on overall survival and side-effects after allogeneic stem cell transplantation
Background: Allogeneic stem cell transplantation (allo-HCT) is associated with high treatment-related mortality and innumerable physical and psychosocial complications and side-effects, such as high fatigue levels, loss of physical performance, infections, graft-versus-host disease (GvHD) and distress. This leads to a reduced quality of life, not only during and after transplantation, but also in the long term. Exercise interventions have been shown to be beneficial in allo-HCT patients. However, to date, no study has focused on long-term effects and survival. Previous exercise studies used ‘usual care’ control groups, leaving it unclear to what extent the observed effects are based on the physical effects of exercise itself, or rather on psychosocial factors such as personal attention. Furthermore, effects of exercise on and severity of GvHD have not been examined so far. We therefore aim to investigate the effects and biological mechanisms of exercise on side-effects, complications and survival in allo-HCT patients during and after transplantation. Methods/design: The PETRA study is a randomized, controlled intervention trial investigating the effects of a yearlong partly supervised mixed exercise intervention (endurance and resistance exercises, 3–5 times per week) in 256 patients during and after allogeneic stem cell transplantation. Patients in the control group perform progressive muscle relaxation training (Jacobsen method) with the same frequency. Main inclusion criterion is planned allo-HCT. Main exclusion criteria are increased fracture risk, no walking capability or severe cardiorespiratory problems. Primary endpoint is overall survival after two years; secondary endpoints are non-relapse mortality, median survival, patient reported outcomes including cancer related fatigue and quality of life, physical performance, body composition, haematological/immunological reconstitution, inflammatory parameters, severity of complications and side-effects (e.g. GvHD and infections), and cognitive capacity. Discussion: The PETRA study will contribute to a better understanding of the physiological and psychological effects of exercise training and their biological mechanisms in cancer patients after allo-HCT. The ultimate goal is the implementation of optimized intervention programs to reduce side-effects and improve quality of life and potentially prognosis after allogeneic stem cell transplantation. Trial registration: ClinicalTrials.gov Identifier: NCT0137439
Accelerometry and physical activity questionnaires - a systematic review
Abstract Background The aim of this study is to review accelerometer wear methods and correlations between accelerometry and physical activity questionnaire data, depending on participant characteristics. Methods We included 57 articles about physical activity measurement by accelerometry and questionnaires. Criteria were to have at least 100 participants of at least 18 years of age with manuscripts available in English. Accelerometer wear methods were compared. Spearman and Pearson correlation coefficients between questionnaires and accelerometers and differences between genders, age categories, and body mass index (BMI) categories were assessed. Results In most investigations, requested wear time was seven days during waking hours and devices were mostly attached on hips with waist belts. A minimum of four valid days with wear time of at least ten hours per day was required in most studies. Correlations (r = Pearson, ρ = Spearman) of total questionnaire scores against accelerometer measures across individual studies ranged from r = 0.08 to ρ = 0.58 (P < 0.001) for men and from r = −0.02 to r = 0.49 (P < 0.01) for women. Correlations for total physical activity among participants with ages ≤65 ranged from r = 0.04 to ρ = 0.47 (P < 0.001) and from r = 0.16 (P = 0.02) to r = 0.53 (P < 0.01) among the elderly (≥65 years). Few studies investigated stratification by BMI, with varying cut points and inconsistent results. Conclusion Accelerometers appear to provide slightly more consistent results in relation to self-reported physical activity among men. Nevertheless, due to overall limited consistency, different aspects measured by each method, and differences in the dimensions studied, it is advised that studies use both questionnaires and accelerometers to gain the most complete physical activity information
A mathematical model of glutathione metabolism
<p>Abstract</p> <p>Background</p> <p>Glutathione (GSH) plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism.</p> <p>Approach</p> <p>We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data.</p> <p>Conclusion</p> <p>We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.</p
In silico experimentation with a model of hepatic mitochondrial folate metabolism
BACKGROUND: In eukaryotes, folate metabolism is compartmentalized and occurs in both the cytosol and the mitochondria. The function of this compartmentalization and the great changes that occur in the mitochondrial compartment during embryonic development and in rapidly growing cancer cells are gradually becoming understood, though many aspects remain puzzling and controversial. APPROACH: We explore the properties of cytosolic and mitochondrial folate metabolism by experimenting with a mathematical model of hepatic one-carbon metabolism. The model is based on known biochemical properties of mitochondrial and cytosolic enzymes. We use the model to study questions about the relative roles of the cytosolic and mitochondrial folate cycles posed in the experimental literature. We investigate: the control of the direction of the mitochondrial and cytosolic serine hydroxymethyltransferase (SHMT) reactions, the role of the mitochondrial bifunctional enzyme, the role of the glycine cleavage system, the effects of variations in serine and glycine inputs, and the effects of methionine and protein loading. CONCLUSION: The model reproduces many experimental findings and gives new insights into the underlying properties of mitochondrial folate metabolism. Particularly interesting is the remarkable stability of formate production in the mitochondria in the face of large changes in serine and glycine input. The model shows that in the presence of the bifunctional enzyme (as in embryonic tissues and cancer cells), the mitochondria primarily support cytosolic purine and pyrimidine synthesis via the export of formate, while in adult tissues the mitochondria produce serine for gluconeogenesis
Factors influencing participation in a randomized controlled resistance exercise intervention study in breast cancer patients during radiotherapy
Background: Over the past years knowledge about benefits of physical activity after cancer is evolving from randomized exercise intervention trials. However, it has been argued that results may be biased by selective participation. Therefore, we investigated factors influencing participation in a randomized exercise intervention trial for breast cancer patients. Methods: Non-metastatic breast cancer patients were systematically screened for a randomized exercise intervention trial on cancer-related fatigue. Participants and nonparticipants were compared concerning sociodemographic characteristics (age, marital status, living status, travel time to the training facility), clinical data (body-mass-index, tumor stage, tumor size and lymph node status, comorbidities, chemotherapy), fatigue, and physical activity. Reasons for participation or declination were recorded. Results 117 patients (52 participants, 65 nonparticipants) were evaluable for analysis. Multiple regression analyses revealed significantly higher odds to decline participation among patients with longer travel time (p = 0.0012), living alone (p = 0.039), with more comorbidities (0.031), previous chemotherapy (p = 0.0066), of age ≥ 70 years (p = 0.025), or being free of fatigue (p = 0.0007). No associations were found with BMI or physical activity. By far the most frequently reported reason for declination of participation was too long commuting time to the training facility. Conclusions: Willingness of breast cancer patients to participate in a randomized exercise intervention study differed by sociodemographic factors and health status. Neither current physical activity level nor BMI appeared to be selective for participation. Reduction of personal inconveniences and time effort, e.g. by decentralized training facilities or flexible training schedules, seem most promising for enhancing participation in exercise intervention trials. Trial registration: Registered at ClinicalTrials.gov: NCT01468766 (October 2011)
- …