983 research outputs found

    Myocardial Viability in Ischemic Syndromes

    Get PDF
    Currently cardiologists face a substantial growth in the number of patients with congestive heart failure, a clinical syndrome with a poor prognosis. In the United States, more than 3 million people suffer from heart failure and more than 100,000 die from end-stage congestive heart failure annually. In the Netherlands the prevalence of heart failure is currently 4 % and rises firmly in the elderly

    Design of a randomized controlled trial of comprehensive rehabilitation in patients with myocardial infarction, stabilized acute coronary syndrome, percutaneous transluminal coronary angioplasty or coronary artery bypass grafting: Akershus Comprehensive Cardiac Rehabilitation Trial (the CORE Study)

    Get PDF
    OBJECTIVES: 1. To assess the long-term effectiveness of a comprehensive cardiac rehabilitation programme on quality of life and survival in patients with a large spectrum of cardiovascular diseases (myocardial infarction, acute coronary syndrome, percutaneous transluminal coronary angioplasty and coronary artery bypass grafting). 2. To establish the degree of correlation between expected improvement of health-related quality of life and improvement in physical function attributable to rehabilitation in the intervention group, in comparison with similar changes in the conventional care group. DESIGN: Randomized, controlled, parallel-group design (intervention/conventional care). SETTING: Akershus County, southeast of Oslo City, Norway. PARTICIPANTS: 500 patients, men and women, aged 40-85 years, who have sustained at least one of the above-mentioned cardiovascular diseases. INTERVENTIONS: 8 weeks of supervised, structured physical training of three periods of 20 min per week, targeting a heart rate of 60-70% of the individual's maximum; home-based physical exercise training with the same basic schedule as in the supervised period; quantification of patients' compliance with the exercise programme by the use of wristwatches, information stored in the watch memory being retrieved once a month during the 3-year follow-up period; and life-style modification with an emphasis on the cessation of smoking and on healthy nutrition and weight control

    Synthesis of Highly Transparent Diblock Copolymer Vesicles via RAFT Dispersion Polymerization of 2,2,2-Trifluoroethyl Methacrylate in n-Alkanes

    Get PDF
    RAFT dispersion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) is performed in n-dodecane at 90 °C using a relatively short poly(stearyl methacrylate) (PSMA) precursor and 2-cyano-2-propyl dithiobenzoate (CPDB). The growing insoluble poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) block results in the formation of PSMA-PTFEMA diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). GPC analysis indicated narrow molecular weight distributions (Mw/Mn ≤ 1.34) for all copolymers, with 19F NMR studies indicating high TFEMA conversions (≥95%) for all syntheses. A pseudo-phase diagram was constructed to enable reproducible targeting of pure spheres, worms, or vesicles by varying the target degree of polymerization of the PTFEMA block at 15-25% w/w solids. Nano-objects were characterized using dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering. Importantly, the near-identical refractive indices for PTFEMA (1.418) and n-dodecane (1.421) enable the first example of highly transparent vesicles to be prepared. The turbidity of such dispersions was examined between 20 and 90 °C. The highest transmittance (97% at 600 nm) was observed for PSMA9-PTFEMA294 vesicles (237 ± 24 nm diameter; prepared at 25% w/w solids) in n-dodecane at 20 °C. Interestingly, targeting the same diblock composition in n-hexadecane produced a vesicle dispersion with minimal turbidity at a synthesis temperature of 90 °C. This solvent enabled in situ visible absorption spectra to be recorded during the synthesis of PSMA16-PTFEMA86 spheres at 15% w/w solids, which allowed the relatively weak n→I band at 515 nm assigned to the dithiobenzoate chain-ends to be monitored. Unfortunately, the premature loss of this RAFT chain-end occurred during the RAFT dispersion polymerization of TFEMA at 90 °C, so meaningful kinetic data could not be obtained. Furthermore, the dithiobenzoate chain-ends exhibited a λmax shift of 8 nm relative to that of the dithiobenzoate-capped PSMA9 precursor. This solvatochromatic effect suggests that the problem of thermally labile dithiobenzoate chain-ends cannot be addressed by performing the TFEMA polymerization at lower temperatures
    • …
    corecore