455 research outputs found

    parameters identification for scroll expander semi empirical model by using genetic algorithm

    Get PDF
    Abstract In this paper a small Organic Rankine Cycle (ORC) plant was tested under different operating conditions and by using refrigerants (R245fa) as working fluids. In particular, attention was posed towards the scroll expander of the power plant in order to identify experimental parameters to use in its predictive semi-empirical model. Experimental results obtained by imposing different operating conditions at the expander inlet section (i.e. temperature, pressure, mass flow rate) and different temperature at the condensation section, were used to validate the mathematical model. An in-house code (MatLab®/Scilab® based) using CoolProp® library for the accurate evaluation of fluid properties, was optimized by using a genetic algorithm implemented in modeFrontier® software. Thus, the validated model was used in predictive mode to evaluate the machine performances

    Effect of kolsterising treatment on surface properties of a duplex stainless steel

    Get PDF
    In recent years, attempts of engineering the surface of duplex stainless steels were made in order to enhance their hardness and tribological properties, without affecting their corrosion resistance. A possibility of improving these properties is provided by a family of processes developed by Prof. B.H. Kolster in the Netherlands in the late 1980’s. These processes (usually referred to as Kolsterising® treatments) consist in a low temperature surface carburizing, which involves the diffusion of large quantities of carbon atoms (up to 6-7 wt.%) into the steel at a diffusion temperature below 450 °C. In the present paper a characterization of the surface layer of Kolsterised duplex SAF 2205 stainless steel was carried out to study the effects of this treatment on surface properties. The characterization includes optical metallographic examination, microhardness tests and SEM-EDS investigation on the Kolsterised steel in the as treated condition and after annealing treatments at 200, 250, 300 350 and 400°C for 10 hours, to evaluate the stability of Kolsterised layer’s properties with a moderate increase in temperature. Moreover, complying with ASTM G48-03 Method E Standard, in order to evaluate the effect of the Kolsterising® treatment on steel pitting resistance, the critical pitting temperature was obtained for Kolsterised duplex SAF 2205 stainless steel compared with the base metal

    On the crack path of rolling contact fatigue cracks in a railway wheel steel

    Get PDF
    The objective of the present paper is to give some preliminary results obtained in the frame of a more wide investigation on the rolling contact fatigue (RCF) behavior of a railway wheel steel. The effect of different test parameters on the RCF fatigue strength of the railway wheel steel was evaluated. RCF tests were conducted using two cylindrical contact specimens under different Po/k ratio (where Po is the maximum Hertzian pressure, k is the yield stress in shear of the material), under dry contact conditions or with water lubrication, and at varying slip ratio. In the present study crack initiation location and crack growth direction were carefully investigated; microscopic examination showed that the cracks were initiated at the surface, propagated obliquely in the depth direction and then occasionally branched into two directions. Usually multiple cracks are initiated, at the rolling contact surface, caused by the accumulation of shear deformation due to repeated rolling–sliding contact loading. Subsequent crack growth has been found to occur along specific sloped directions. The influence of Po/k ratio, dry or wet contact, and slip ratio on crack slope angle to the radial direction and the depths at which slope changes occur has been investigated. Observed crack slopes and slope change position have been discussed according to crack path prediction criteria in the literature

    heat exchanger design and optimization by using genetic algorithm for externally fired micro turbine

    Get PDF
    Abstract In this study, a new configuration where syngas produced by downdraft gasifier is feed directly in an externally fired air turbine is discussed. Attention was posed towards the critical component of this configuration: the heat exchanger. To achieve acceptable electrical efficiencies, high temperature of the air at the inlet turbine section was imposed. A code for heat exchanger design was built by using Matlab®, while the geometrical optimization was performed by using modeFRONTIER® by imposing a multi-objective function to maximize the overall heat transfer coefficient and minimize both costs and pressure drops across the equipment

    Analysis of particle size distribution in municipal wastewaters

    Get PDF
    Innovative membrane filtration plants for municipal wastewaters are being developed and need the support of reliable filtration models in the designing phase. In the past, semi-empirical filtration models for membrane processes have been proposed. At present, the most prominent works point out the importance of particle poly-dispersity in the development of reliable models but fail into the implementation of probability density functions (PDFs) capable of an accurate fitting of the experimental particle size distribution (PSD). We report the experimental PSDs of two different municipal wastewater samples, obtained through the laser diffraction technique. The experimental results show that the laser diffraction technique can characterize wastewater particle dimensions both in the colloidal and supra-colloidal regions. The experimental study is complemented by a comparative analysis in which many PDFs are used to fit the experimental PSDs through a least-squares approach. Some of these PDFs are proposed here for the first time to fit experimental wastewater PSDs. Among the PDFs considered for the statistical modeling, the three-parameter lognormal and the Burr PDFs are demonstrated to provide satisfactory fitting, whereas the other considered functions fail. This result is confirmed by the analysis of both the available wastewater samples

    Assessment of the influence of electric arc furnace slag as a non-conventional filler for Nitrile Butadiene Rubber

    Get PDF
    Reinforcement of polymers by the addition of particles filler is a complex phenomenon that depends mainly on the hydrodynamic effect and a complex interplay between polymer, filler, and interfacial region. Mineral fillers are usually adopted as low-cost extenders due to their lower cost. In this study, the influence of a waste material such as electric arc furnace steel slag is assessed as filler for Nitrile-Butadiene Rubber following experimental procedures and analytical calculations adopted for traditional fillers. It was found that the slag content affects the static and the dynamic properties by increasing the material's capability to storage and dissipate energy. In addition to an important contribution of the hydrodynamic effect, the presence of an increasing immobilized rubber fraction around the slag particles (quantified by a differential scanning calorimetry analysis) plays a central role. The slag stiffens the NBR composite; the increase of static tensile and dynamic shear storage moduli was found to be consistent with the Halpin-Tsai and Guth-Gold prevision models respectively. Moreover, the non-linear dynamic behavior was found to be well-fitted by the Kraus equation models. The reinforcing ability of the slag particles as filler was confirmed by the negative slope of the Kraus plot on swelling data

    Air gasification of digestate and its co-gasification with residual biomass in a pilot scale rotary kiln

    Get PDF
    In this study energy recovery of digestate from a biogas plant was investigated via air gasification. Gasification tests were executed in a pilot scale rotary kiln plant having a nominal biomass feeding rate of about 20 kg/h. The equivalence ratio was varied from 0.22 to 0.39 with the goal to approach the autothermal condition. Tests were carried out for 5 h in steady state condition. Syngas composition, char and gas yields were measured. To improve the cold gas efficiency of the process, a mixture of digestate and almond shells (60:40 wt%) was gasified. Autothermal condition was reached with the mixture using equivalence ratio of 0.30 where the corresponding cold gas efficiency achieved the maximum value of 55%. The raw gas had a lower heating value of 4–5 MJ/Nm3. To evaluate possible improvements in the produced gas properties, in this work the effect of steam injection was also investigated

    Factors affecting the usage of T-government services - An exploratory study

    Get PDF
    CITATO NEL DATABASE ISI: ISI unique article identifier ISI:00025888540004

    Bridging the gap of storage ring light sources and linac-driven free-electron lasers

    Get PDF
    High-gain free-electron lasers (FELs) are driven by short, high-charge density electron beams as only produced at dedicated single pass or recirculating linear accelerators. We describe new conceptual, technical, and modeling solutions to produce subpicosecond, up to 100 \u3bcJ energy extreme ultra-violet and soft x-ray FEL pulses at high- and tunable repetition rates, from diffraction-limited storage ring light source. In contrast to previously proposed schemes, we show that lasing can be simultaneous to the standard multibunch radiation emission from short insertion devices, and that it can be obtained with limited impact on the storage ring infrastructure. By virtue of the high-average power but moderate pulse energy, the storage ring-driven high-gain FEL would open the door to unprecedented accuracy in time-resolved spectroscopic analysis of matter in the linear response regime, in addition to inelastic scattering experiments
    • …
    corecore