9 research outputs found

    Ketamine alters oscillatory coupling in the hoppocampus

    Get PDF
    Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling

    Influência do ambiente aversivo na resposta nociceptiva de ratos : um estudo sobre o papel de receptores opióides e canabinóides

    No full text
    In innate or learned threatening situations, animals display a set of defensive behaviors specie-specific such as autonomic alterations, flight, fight and antinociception. Exposure of mice to open elevated plus-maze (oEPM: four open arms), an aversive situation, elicits antinociception of high magnitude. However, mechanisms involved in this kind of antinociception are not clear yet. This study investigated whether antinociception induced by exposure to an oEPM shows cross-tolerance with morphine (Exp. I and II); is attenuated by repetead exposure to the oEPM (Exp. III); is blocked by systemic treatment with naltrexone (Exp. IV); is prevented by adrenalectomy (Exp. V); persists after animal removal from the oEPM and if there are sex-related differences in this factor (Exp. VI); is mediated by CB1 cannabinoid receptor (Exp. VII). Rats were daily treated with morphine (M, 5 mg/kg, i.p.) or distilled water (DW) for 5 consecutive days (antinociceptive tolerance assessed by the tailflick test). Next day, rats received formalin 2.5% injection (50 μL) into the right hind paw and, after first phase of formalin test, they were treated with M or DW. 25 minutes after formalin injection into the paw, time spent licking the injected paw was recorded for 10 minutes (Exp. 1). Similar procedure was followed in the Experiment II, except that time spent licking the paw was recorded during exposure to the oEPM or enclosed EPM (eEPM: four arms enclosed) in undrugged rats. In Experiment III, nociception was evaluated in rats submitted to 1, 2, 3, 4 or 6 exposures to either eEPM or oEPM (formalin was injected only during the last exposure). Experiment IV investigated the effects of naltrexone (0 and 2.5 mg/kg; s.c.) on nociception during eEPM or oEPM exposure. Nociception was also assessed during the eEPM or oEPM exposure in sham and adrenalectomized rats (exp. V). In experiment VII, rats were treated with vehicle (DMSO 60%) or AM251 (1 mg/kg, i.p., CB1 receptor antagonist). Fifteen minutes later, animals received formalin injection into the paw and, 25 minutes after, they were exposed to the eEPM or oEPM. In experiment VI, male and female rats were exposed to eEPM or oEPM (with no noxious stimulus during exposure) and imediately after they were tested on the hot plate test (52.4 °C). Results showed that antinociception induced by oEPM does not display cross-tolerance to morphine; was not altered for at least 6 exposures to the maze; failed to be reversed by naltrexone; was not prevented by adrenalectomy and was not blocked by AM251. In addition, this antinociception does not persist after animal removal of the apparatus, by contrast, it occurs a hyperalgesia (as assessed by hot plate test), a response that does not depend on sex-related differences. Results suggest that antinociception induced by oEPM: is not mediated by opioid system or CB1 cannabinoid receptors and it is not sensitive to corticosterone. Furthermore, animal removal of aversive environment alters nociceptive response from antinociception to hyperalgesia, a phenomenon that is independent of the gender.Universidade Federal de Sao CarlosEm situações ameaçadoras de natureza inata ou aprendida, animais exibem um conjunto de comportamentos defensivos espécie-específicos, tais como alterações autonômicas, fuga, luta e antinocicepção. A exposição de camundongos ao labirinto em cruz elevado aberto (LCEa: quatro braços abertos), uma situação aversiva, induz antinocicepção de alta magnitude. Todavia, os mecansimos envolvidos em tal antinocicepção ainda não estão elucidados. O presente estudo investigou se a antinocicepção induzida por exposição ao LCEa: mostra tolerância cruzada a morfina (experimentos I e II); é atenuada por exposição repetida ao LCEa (experimento III); é revertida por tratamento sistêmico com naltrexona (experimento IV); é impedida por adrenalectomia (experimento V); persiste após remoção do animal do LCEa e se há diferenças relacionadas ao sexo neste fator (experimento VI); é mediada pelo receptor canabinóide, CB1 (experimento VII). Ratos foram diariamente tratados com morfina (M, 5 mg/Kg, i.p.) ou água destilada (AD) por 5 dias consecutivos (tolerância antinociceptiva avaliada pelo teste de retirada da cauda). No dia seguinte, os ratos receberam injeção de formalina 2,5% (50L) na pata traseira direita e, após a primeira fase do teste de formalina, foram tratados com M ou AD. Vinte e cinco minutos após injeção de formalina na pata, o tempo de lambidas na pata foi registrado por 10 minutos (experimento I). Procedimento semelhante foi utilizado no experimento II, exceto que o tempo de lambidas na pata foi registrado durante exposição ao LCEa ou LCE fechado (LCEf: quatro braços fechados). No experimento III, nocicepção foi avaliada em ratos submetidos a 1, 2, 3, 4 ou 6 exposições ao LCEf ou LCEa (formalina injetada somente durante a última exposição). O experimento IV investigou os efeitos de naltrexona (2,5 mg/kg; s.c.) sobre a nocicepção durante exposição ao LCEf ou LCEa. A nocicepção também foi avaliada durante exposição ao LCEf ou LCEa em ratos sham operados e adrenalectomizados (experimento V). No experimento VII, os ratos foram tratados com veículo (DMSO 60%) ou AM251 (1 mg/kg, i.p., antagonista CB1). Quinze minutos após, os animais receberam formalina na pata e, após 25 minutos, foram expostos ao LCEf ou LCEa. Já no experimento VI, ratos machos e fêmeas foram expostos ao LCEf ou LCEa, sem nenhum estímulo nociceptivo aplicado durante exposição e, imediatamente após, foram testados no teste da placa quente (52,4 °C). Os resultados mostraram que a antinocicepção induzida pelo LCEa não exibe tolerância cruzada a morfina; não foi alterada por ao menos 6 exposições ao labirinto; mostrou-se insensível à naltrexona; não foi impedida por adrenalectomia e não foi bloqueada por AM251. Ainda, tal antinocicepção não perdura após remoção dos animais do aparelho, pelo contrário, ocorre uma hiperalgesia (conforme avaliado pelo teste de placa quente), uma resposta que independe de diferenças relacionadas ao sexo. Os resultados sugerem que a antinocicepção induzida pelo LCEa: não é mediada por sistema opióide ou receptores canabinóides CB1 e não é sensível a corticosterona. Além disso, a retirada dos animais do ambiente aversivo altera a resposta nociceptiva de antinocicepção para hiperalgesia, um fenômeno que independe do gênero

    Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking

    Get PDF
    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansionWhat makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansio

    Contribution of the rostral ventromedial medulla to post-anxiety induced hyperalgesia

    Get PDF
    Rats exposed to an elevated plus maze (EPM) with four open arms display antinociception while on the maze and hyperalgesia immediately upon removal. Little is known about the neural mechanisms underlying EPM-induced antinociception and the subsequent hyperalgesia except that the antinociception is not mediated by endogenous opioids. The objective of the present study was to test the hypothesis that endogenous cannabinoids and/or the rostral ventromedial medulla (RVM) contributes to EPM-induced antinociception. Administration of the CB1 receptor antagonist AM251 (1mg/kg, i.p.) had no effect on baseline nociception to formalin administration into the hindpaw or on the antinociception produced by placing a rat on the open EPM. Likewise, inactivation of the RVM by microinjecting the GABAA receptor agonist muscimol (10ng/0.5μL) had no effect on the antinociceptive effect of placing a rat in the EPM. However, RVM inactivation blocked the hyperalgesia produced upon removal from the EPM. Although distinct classes of RVM neurons inhibit and facilitate nociception, the present data demonstrate that the antinociception induced by the EPM and the subsequent hyperalgesia is mediated by distinct neural pathways. ► Exposure of a rat to the open elevated plus maze (EPM) produces antinociception. ► Neither CB1 receptors nor the RVM contributes to this antinociception. ► Removing rats from the open EPM produces hyperalgesia. ► Inactivation of the RVM reverses this hyperalgesia

    Environmentally induced antinociception and hyperalgesia in rats and mice

    No full text
    Stress can enhance and inhibit nociception depending on the situation. Thus, simply shifting the context from the elevated plus maze (EPM) which has been shown to produce stress-induced antinociception to a different environment could produce drastic and rapid changes in nociception. The present experiment tested this hypothesis by assessing nociception in rats and mice during and immediately after removal from the maze. Experiment 1 found hyperalgesia in female and male rats tested on the hot plate immediately after exposure to the elevated plus maze. This hyperalgesia occurred with or without the added stress of a hind paw formalin injection and regardless of whether rats were exposed to an EPM with open (oEPM) or enclosed (eEPM) arms despite a clear antinociceptive effect while on the oEPM. Experiment 2 showed a similar shift from antinociception to nociception on the formalin test in mice immediately after removing them from the EPM. These data demonstrate that a mild stressor such as the EPM can produce both antinociception and hyperalgesia depending on the context. This shift from antinociception to hyperalgesia occurs rapidly and is evident in mice, male and female rats, and with the hot plate and formalin tests. â–º Rats display hyperalgesia on the hot plate immediately after exposure to the EPM. â–º This hyperalgesia is probably caused by the stress associated with novelty. â–º Fear-induced antinociception is present only during exposure to the EPM. â–º Mice removed from the EPM display a shift from antinociception to normal nociception

    Self-Assembled Benznidazole-Loaded Cationic Nanoparticles Containing Cholesterol/Sialic Acid: Physicochemical Properties, In Vitro Drug Release and In Vitro Anticancer Efficacy

    No full text
    Cationic polymeric nanoparticles (NPs) have the ability to overcome biological membranes, leading to improved efficacy of anticancer drugs. The modulation of the particle-cell interaction is desired to control this effect and avoid toxicity to normal cells. In this study, we explored the surface functionalization of cationic polymethylmethacrylate (PMMA) NPs with two natural compounds, sialic acid (SA) and cholesterol (Chol). The performance of benznidazole (BNZ) was assessed in vitro in the normal renal cell line (HEK-293) and three human cancer cell lines, as follows: human colorectal cancer (HT-29), human cervical carcinoma (HeLa), and human hepatocyte carcinoma (HepG2). The structural properties and feasibility of NPs were evaluated and the changes induced by SA and Chol were determined by using multiple analytical approaches. Small (<200 nm) spherical NPs, with a narrow size distribution and high drug-loading efficiency were prepared by using a simple and reproducible emulsification solvent evaporation method. The drug interactions in the different self-assembled NPs were assessed by using Fourier transform-infrared spectroscopy. All formulations exhibited a slow drug-release profile and physical stability for more than 6 weeks. Both SA and Chol changed the kinetic properties of NPs and the anticancer efficacy. The feasibility and potential of SA/Chol-functionalized NPs has been demonstrated in vitro in the HEK-293, HepG2, HeLa, and HT-29 cell lines as a promising system for the delivery of BNZ

    Phytol-Loaded Solid Lipid Nanoparticles as a Novel Anticandidal Nanobiotechnological Approach

    No full text
    Phytol is a diterpene alcohol and can be found as a product of the metabolism of chlorophyll in plants. This compound has been explored as a potential antimicrobial agent, but it is insoluble in water. In this study, we describe a novel approach for an interesting anticandidal drug delivery system containing phytol. Different formulations of phytol-loaded solid lipid nanoparticles (SLN) were designed and tested using a natural lipid, 1,3-distearyl-2-oleyl-glycerol (TG1). Different compositions were considered to obtain three formulations with 1:10, 1:5, and 1:3 w/w phytol/TG1 ratios. All the formulations were prepared by emulsification solvent evaporation method and had their physicochemical properties assessed. The biocompatibility assay was performed in the HEK-293 cell line and the antifungal efficacy was demonstrated in different strains of Candida ssp., including different clinical isolates. Spherical and uniform SLN (<300 nm, PdI < 0.2) with phytol-loading efficiency >65% were achieved. Phytol-loaded SLN showed a dose-dependent cytotoxic effect in the HEK-293 cell line. The three tested formulations of phytol-loaded SLN considerably enhanced the minimal inhibitory concentration of phytol against 15 strains of Candida spp. Considering the clinical isolates, the formulations containing the highest phytol/TG1 ratios showed MICs at 100%. Thus, the feasibility and potential of phytol-loaded SLN was demonstrated in vitro, being a promising nanocarrier for phytol delivery from an anticandidal approach

    Improving Encapsulation of Hydrophilic Chloroquine Diphosphate into Biodegradable Nanoparticles: A Promising Approach against Herpes Virus Simplex-1 Infection

    No full text
    Chloroquine diphosphate (CQ) is a hydrophilic drug with low entrapment efficiency in hydrophobic nanoparticles (NP). Herpes simplex virus type 1 (HSV-1) is an enveloped double-stranded DNA virus worldwide known as a common human pathogen. This study aims to develop chloroquine-loaded poly(lactic acid) (PLA) nanoparticles (CQ-NP) to improve the chloroquine anti- HSV-1 efficacy. CQ-NP were successfully prepared using a modified emulsification-solvent evaporation method. Physicochemical properties of the NP were monitored using dynamic light scattering, atomic force microscopy, drug loading efficiency, and drug release studies. Spherical nanoparticles were produced with modal diameter of <300 nm, zeta potential of −20 mv and encapsulation efficiency of 64.1%. In vitro assays of CQ-NP performed in Vero E6 cells, using the MTT-assay, revealed different cytotoxicity levels. Blank nanoparticles (B-NP) were biocompatible. Finally, the antiviral activity tested by the plaque reduction assay revealed greater efficacy for CQ-NP compared to CQ at concentrations equal to or lower than 20 µg mL−1 (p < 0.001). On the other hand, the B-NP had no antiviral activity. The CQ-NP has shown feasible properties and great potential to improve the antiviral activity of drugs

    Environmentally induced antinociception and hyperalgesia in rats and mice

    No full text
    Stress can enhance and inhibit nociception depending on the situation. Thus, simply shifting the context from the elevated plus maze (EPM) which has been shown to produce stress-induced antinociception to a different environment could produce drastic and rapid changes in nociception. The present experiment tested this hypothesis by assessing nociception in rats and mice during and immediately after removal from the maze. Experiment 1 found hyperalgesia in female and male rats tested on the hot plate immediately after exposure to the elevated plus maze. This hyperalgesia occurred with or without the added stress of a hind paw formalin injection and regardless of whether rats were exposed to an EPM with open (oEPM) or enclosed (eEPM) arms despite a clear antinociceptive effect while on the oEPM. Experiment 2 showed a similar shift from antinociception to nociception on the formalin test in mice immediately after removing them from the EPM. These data demonstrate that a mild stressor such as the EPM can produce both antinociception and hyperalgesia depending on the context. This shift from antinociception to hyperalgesia occurs rapidly and is evident in mice, male and female rats, and with the hot plate and formalin tests. (C) 2011 Elsevier B.V. All rights reserved
    corecore