197 research outputs found
Role of the ubiquitin proteasome system in renal cell carcinoma
Renal cell carcinoma (RCC) accounts for approximately 2.6% of all cancers in the United States. While early stage disease is curable by surgery, the median survival of metastatic disease is only 13 months. In the last decade, there has been considerable progress in understanding the genetics of RCC. The VHL tumor suppressor gene is inactivated in the majority of RCC cases. The VHL protein (pVHL) acts as an E3 ligase that targets HIF-1, the hypoxia inducible transcription factor, for degradation by the ubiquitin proteasome system (UPS). In RCC cases with mutant pVHL, HIF-1 is stabilized and aberrantly expressed in normoxia, leading to the activation of pro-survival genes such as vascular endothelial growth factor (VEGF). This review will focus on the defect in the UPS that underlies RCC and describe the development of novel therapies that target the UPS
Identification of a novel prostate cancer biomarker, caveolin-1: Implications and potential clinical benefit
While prostate cancer is a common disease in men, it is uncommonly life-threatening. To better understand this phenomenon, tumor biologists have sought to elucidate the mechanisms that contribute to the development of virulent prostate cancer. The recent discovery that caveolin-1 (Cav-1) functions as an important oncogene involved in prostate cancer progression reflects the success of this effort. Cav-1 is a major structural coat protein of caveolae, specialized plasma membrane invaginations involved in multiple cellular functions, including molecular transport, cell adhesion, and signal transduction. Cav-1 is aberrantly overexpressed in human prostate cancer, with higher levels evident in metastatic versus primary sites. Intracellular Cav-1 promotes cell survival through activation of Akt and enhancement of additional growth factor pro-survival pathways. Cav-1 is also secreted as a biologically active molecule that promotes cell survival and angiogenesis within the tumor microenvironment. Secreted Cav-1 can be reproducibly detected in peripheral blood using a sensitive and specific immunoassay. Cav-1 levels distinguish men with prostate cancer from normal controls, and preoperative Cav-1 levels predict which patients are at highest risk for relapse following radical prostatectomy for localized disease. Thus, secreted Cav-1 is a promising biomarker in identifying clinically significant prostate cancer
Mitochondrial DNA evolution in the Anaxyrus boreas species group
The Anaxyrus boreas species group currently comprises four species in western North America including the broadly distributed A. boreas, and three localized species, Anaxyrus nelsoni, Anaxyrus exsul and Anaxyrus canorus. Phylogenetic analyses of the mtDNA 12S rDNA, cytochrome oxidase I, control region, and restriction sites data, identified three major haplotype clades. The Northwest clade (NW) includes both subspecies of A. boreas and divergent minor clades in the middle Rocky Mountains, coastal, and central regions of the west and Pacific Northwest. The Southwest (SW) clade includes A. exsul, A. nelsoni, and minor clades in southern California. Anaxyrus canorus, previously identified as paraphyletic, has populations in both the NW and SW major clades. The Eastern major clade (E) includes three divergent lineages from southern Utah, the southern Rocky Mountains, and north of the Great Basin at the border of Utah and Nevada. These results identify new genetic variation in the eastern portion of the toad’s range and are consistent with previous regional studies from the west coast. Low levels of control region sequence divergence between major clades (2.2–4.7% uncorrected pair-wise distances) are consistent with Pleistocene divergence and suggest that the phylogeographic history of the group was heavily influenced by dynamic Pleistocene glacial and climatic changes, and especially pluvial changes, in western North America. Results reported here may impact conservation plans in that the current taxonomy does not reflect the diversity in the group
Non-Native Salmonids Affect Amphibian Occupancy at Multiple Spatial Scales
Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments.
Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA.
Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence.
Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale.
Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky Mountains may lead to extinction in catchments with limited suitable habitat
Radium-223 Treatment Produces Prolonged Suppression of Resident Osteoblasts and Decreased Bone Mineral Density in Trabecular Bone in Osteoblast Reporter Mice
Radium 223 (Ra-223) is an α-emitting bone-homing radiopharmaceutical that targets tumor-induced osteoblasts and is used to reduce bone pain and prolong overall survival in men with bone-metastatic, castrate-resistant prostate cancer. However, increased fracture risk in skeletal sites with no bone metastasis has been observed in patients treated with Ra-223. Both luciferase- or green fluorescence protein (GFP)-labeled osteoblast reporter mice were used to monitor the effect of Ra-223 on resident osteoblasts and normal bone structure. Upon Ra-223 treatment, 70% of resident osteoblasts were reduced within 2 days, and the osteoblast reduction lasted for at least 18 weeks without detectable recovery, as measured by in vivo bioluminescent imaging. In GFP-labeled osteoblast reporter mice, Ra-223 mainly reduced osteoblasts localized in the trabecular bone areas; the osteoblasts in the growth plates were less affected. Micro-computed tomography analyses showed that Ra-223 significantly reduced bone mineral density and bone microstructure in the trabecular area of femurs but not in the cortical bone. Tumor-induced bone was generated by inoculating osteogenic TRAMP-BMP4 prostate cancer cells into the mouse femurs; Ra-223 treatment significantly reduced tumor-induced osteoblasts. Our study shows that Ra-223 affects bone structures that are not involved in bone metastasis. Strategies that improve bone health may reduce fracture risk in patients receiving Ra-223
Monitoring Glucocorticoid Receptor in Plasma-derived Extracellular Vesicles as a Marker of Resistance to Androgen Receptor Signaling Inhibition in Prostate Cancer
Disease progression following androgen ablation was shown to be associated with upregulation of the glucocorticoid receptor (GR). Longitudinal monitoring of GR expression in circulating extracellular vesicles (EV) may reflect changes in the tumor cell and facilitates detection of acquired resistance. We utilized LNCaP, LREX cells and a patient-derived xenograft, MDA PDX 322-2-6a, for in vitro and in vivo experiments. Plasma-derived EVs were isolated from patients with localized high-risk prostate cancer undergoing androgen ablation. The mRNA levels of GR in EVs and their responsive genes were detected by transcriptome analysis, qRT-PCR and the protein levels by Western blot analysis. We detected changes in GR expression at mRNA and protein levels in EVs derived from LNCaP and LREX cells in in vitro studies. In in vivo experiments, LNCaP and the PDX MDA 322-2-6a–bearing mice were treated with enzalutamide. GR levels in plasma-derived EVs were increased only in those tumors that did not respond to enzalutamide. Treatment of mice bearing enzalutamide-resistant tumors with a GR inhibitor in combination with enzalutamide led to a transient pause in tumor growth in a subset of tumors and decreased GR levels intracellular and in plasma-derived EVs. In a subgroup of patients with high-risk localized prostate cancer treated with androgen signaling inhibition, GR was found upregulated in matching tissue and plasma EVs. These analyses showed that GR levels in plasma-derived EVs may be used for monitoring the transition of GR expression allowing for early detection of resistance to androgen ablation treatment
Estimated Ultraviolet Radiation Doses in Wetlands in Six National Parks
Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/ Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m-2 (range of 3.4–32.1 W-h m-2). The mean dose was lowest in Acadia (13.7 W-h m-2) and highest in Rocky (24.4 W-h m-2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 µW cm-2 (range 21.4–194.7 µW cm)2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L-1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms
Prostate Cancer-Induced Endothelial-Cell-to-Osteoblast Transition Drives Immunosuppression in the Bone-Tumor Microenvironment Through Wnt Pathway-Induced M2 Macrophage Polarization
Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells\u27 proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC
- …