90 research outputs found

    Device to measure axial displacement in a borehole

    Get PDF
    A device to measure minute displacement in rocks, including anchor deployment means, anchor registration means, and frame release means. Further including anchor units comprising a fixed anchor point, a reversible anchor actuator and a deployable anchor face capable of being deployed with a force of up to 2000 lbs

    Clouds and Seasonality on Terrestrial Planets with Varying Rotation Rates

    Full text link
    Using an idealised climate model incorporating seasonal forcing, we investigate the impact of rotation rate on the abundance of clouds on an Earth-like aquaplanet, and the resulting impacts upon albedo and seasonality. We show that the cloud distribution varies significantly with season, depending strongly on the rotation rate, and is well explained by the large-scale circulation and atmospheric state. Planetary albedo displays non-monotonic behaviour with rotation rate, peaking at around 1/2ΩE\Omega_E. Clouds reduce the surface temperature and total precipitation relative to simulations without clouds at all rotation rates, and reduce the dependence of total precipitation on rotation rate, causing non-monotonic behaviour and a local maximum around 1/8ΩE\Omega_E ; these effects are related to the impacts of clouds on the net atmospheric and surface radiative energy budgets. Clouds also affect the seasonality. The influence of clouds on the extent of the winter Hadley cell and the intertropical convergence zone is relatively minor at slow rotation rates (<<1/8ΩE\Omega_E ), but becomes more pronounced at intermediate rotation rates, where clouds decrease their maximum latitudes. The timing of seasonal transitions varies with rotation rate, and the addition of clouds reduces the seasonal phase lag.Comment: 21 pages, 9 figure

    Figuring Out Gas &amp; Galaxies in Enzo (FOGGIE). II. Emission from the z=3 Circumgalactic Medium

    Get PDF
    Observing the circumgalactic medium (CGM) in emission provides 3D maps of the spatial and kinematic extent of the gas that fuels galaxies and receives their feedback. We present mock emission-line maps of highly resolved CGM gas from the FOGGIE project (Figuring Out Gas & Galaxies in Enzo) and link these maps back to physical and spatial properties of the gas. By increasing the spatial resolution alone, the total luminosity of the line emission increases by an order of magnitude. This increase arises in the abundance of dense small-scale structure resolved when the CGM gas is simulated to < 100 pc scales. Current integral field unit instruments like KCWI and MUSE should be able to detect the brightest knots and filaments of such emission, and from this to infer the bulk kinematics of the CGM gas with respect to the galaxy. We conclude that accounting for small-scale structure well below the level of instrument spatial resolution is necessary to properly interpret such observations in terms of the underlying gas structure driving observable emission.Comment: 18 pages, 10 figures. Submitted to ApJ. Comments welcom

    Figuring Out Gas &amp; Galaxies in Enzo (FOGGIE). III. The Mocky Way:Investigating Biases in Observing the Milky Way's Circumgalactic Medium

    Get PDF
    The circumgalactic medium (CGM) of the Milky Way is mostly obscured by nearby gas in position-velocity space because we reside inside the Galaxy. Substantial biases exist in most studies on the Milky Way's CGM that focus on easier-to-detect high-velocity gas. With mock observations on a Milky-Way analog from the FOGGIE simulation, we investigate four observational biases related to the Milky Way's CGM. First, QSO absorption-line studies probe a limited amount of the CGM mass: only 35% of the mass is at high Galactic latitudes ∣b∣>20|b|>20 degrees, of which only half is moving at ∣vLSR∣≳100|v_{\rm LSR}|\gtrsim100 km s−1^{-1}. Second, the inflow rate (M˙\dot{M}) of the cold gas observable in HI 21cm is reduced by a factor of ∼10\sim10 as we switch from the local standard of rest to the galaxy's rest frame; meanwhile M˙\dot{M} of the cool and warm gas does not change significantly. Third, OVI and NV are promising ions to probe the Milky Way's outer CGM (r≳r\gtrsim15 kpc), but CIV may be less sensitive. Lastly, the scatter in ion column density is a factor of 2 higher if the CGM is observed from inside-out than from external views because of the gas radial density profile. Our work highlights that observations of the Milky Way's CGM, especially those using HI 21cm and QSO absorption lines, are highly biased. We demonstrate that these biases can be quantified and calibrated through synthetic observations with simulated Milky-Way analogs.Comment: ApJ in pres
    • …
    corecore