5 research outputs found

    Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations

    Get PDF
    Smooth muscle dysfunction syndrome (SMDS) due to heterozygous ACTA2 arginine 179 alterations is characterized by patent ductus arteriosus, vasculopathy (aneurysm and occlusive lesions), pulmonary arterial hypertension, and other complications in smooth muscle-dependent organs. We sought to define the clinical history of SMDS to develop recommendations for evaluation and management. Medical records of 33 patients with SMDS (median age 12 years) were abstracted and analyzed. All patients had congenital mydriasis and related pupillary abnormalities at birth and presented in infancy with a patent ductus arteriosus or aortopulmonary window. Patients had cerebrovascular disease characterized by small vessel disease (hyperintense periventricular white matter lesions; 95%), intracranial artery stenosis (77%), ischemic strokes (27%), and seizures (18%). Twelve (36%) patients had thoracic aortic aneurysm repair or dissection at median age of 14 years and aortic disease was fully penetrant by the age of 25 years. Three (9%) patients had axillary artery aneurysms complicated by thromboembolic episodes. Nine patients died between the ages of 0.5 and 32 years due to aortic, pulmonary, or stroke complications, or unknown causes. Based on these data, recommendations are provided for the surveillance and management of SMDS to help prevent early-onset life-threatening complications

    Novel compound heterozygous mutations in inositol polyphosphate phosphatase-like 1 in a family with severe opsismodysplasia.

    No full text
    This study aimed to identify the genetic basis of a severe skeletal lethal dysplasia. The main clinical features of two affected fetuses included short limbs with flared metaphyses, bowed radii, femora and tibiae, irregular ossification of hands and feet, and marked platyspondyly. Affected and nonaffected family members were subjected to whole-exome sequencing, followed by immunoblot analysis on amniocytes isolated from one of the affected individuals. Unique compound heterozygous variants in the inositol polyphosphate phosphatase-like 1 (INPPL1) gene encoding the SHIP2 protein were identified in both affected individuals. One variant was inherited from each unaffected parent. Both allelic variants, c.(2327-1G\u3eC);(1150_1151delGA), are predicted to result in premature stop codons leading to nonsense-mediated mRNA decay of the mutant alleles and no production of SHIP2. The absence of SHIP2 was confirmed by immunoblot analysis of proband amniocytes. This skeletal disorder is caused by the complete absence of the SHIP2 protein. INPPL1 mutations have been reported in opsismodysplasia, an autosomal recessive skeletal dysplasias with significant delayed bone formation. Our finding highlights the critical role that INPPL1/SHIP2 plays in skeletal development

    STIM1-mediated calcium influx controls antifungal immunity and the metabolic function of non-pathogenic Th17 cells.

    No full text
    Immunity to fungal infections is mediated by cells of the innate and adaptive immune system including Th17 cells. Ca2+ influx in immune cells is regulated by stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. We here identify patients with a novel mutation in STIM1 (p.L374P) that abolished Ca2+ influx and resulted in increased susceptibility to fungal and other infections. In mice, deletion of STIM1 in all immune cells enhanced susceptibility to mucosal C. albicans infection, whereas T cell-specific deletion of STIM1 impaired immunity to systemic C. albicans infection. STIM1 deletion impaired the production of Th17 cytokines essential for antifungal immunity and compromised the expression of genes in several metabolic pathways including Foxo and HIF1α signaling that regulate glycolysis and oxidative phosphorylation (OXPHOS). Our study further revealed distinct roles of STIM1 in regulating transcription and metabolic programs in non-pathogenic Th17 cells compared to pathogenic, proinflammatory Th17 cells, a finding that may potentially be exploited for the treatment of Th17 cell-mediated inflammatory diseases

    STIM1‐mediated calcium influx controls antifungal immunity and the metabolic function of non‐pathogenic Th17 cells

    No full text
    Immunity to fungal infections is mediated by cells of the innate and adaptive immune system including Th17 cells. Ca2+ influx in immune cells is regulated by stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. We here identify patients with a novel mutation in STIM1 (p.L374P) that abolished Ca2+ influx and resulted in increased susceptibility to fungal and other infections. In mice, deletion of STIM1 in all immune cells enhanced susceptibility to mucosal C. albicans infection, whereas T cell-specific deletion of STIM1 impaired immunity to systemic C. albicans infection. STIM1 deletion impaired the production of Th17 cytokines essential for antifungal immunity and compromised the expression of genes in several metabolic pathways including Foxo and HIF1α signaling that regulate glycolysis and oxidative phosphorylation (OXPHOS). Our study further revealed distinct roles of STIM1 in regulating transcription and metabolic programs in non-pathogenic Th17 cells compared to pathogenic, proinflammatory Th17 cells, a finding that may potentially be exploited for the treatment of Th17 cell-mediated inflammatory diseases
    corecore