9 research outputs found

    Evaluation of Methods for the Analysis of Untreated and Processed Lignocellulosic Biomasses

    Get PDF
    The overall efficiency of the transformation of lignocellulosic materials to usable products as chemicals and fuels must be governed by adequate analysis of products before and after treatments. Using some promising technologies, lignocelluloses which are biomasses from marine plant and trees, grains, food and non-food crops, and woodbased can give products as fuel alcohol and other chemicals. Various methods of transformation from feedstock to valuable end products are discussed in the scientific literature. Therefore, yields must justify methods used for biomass transformations. As a result, adequate compositional analysis of these processing stages is needed. In this chapter, standard common methods such as gravimetric, chromatography, spectroscopic and their variations for analysis on both untreated and treated lignocelluloses are highlighted. The ease of the use and challenges with recommendations to their applicability to quantifying lignocelluloses fractionations for reproducibility and to be representative are discussed. With biomass technology, virtually all and even more products that can be produced from fossil energy can also be produced from biomass energy. Adequate analysis is therefore necessary

    Pesticides Removal Using Actinomycetes and Plants

    No full text
    The γ-hexachlorocyclohexane (γ-HCH, lindane) is an organochlorine pesticide used in agriculture and medicine to world level. It has a big tendency to bioaccumulation into the environment so is listed as a priority pollutant by the US EPA. Hence the development of new technologies to remediate these sites using microorganisms is every time more necessary. The actinomycetes are Gram-positive bacteria with great potential to bioremediate xenobiotics. One strain, Streptomyces sp. M7, isolated from organochlorine pesticide contaminated sediment, was selected for its capacity to grow in presence of lindane as only carbon source. This microorganism was cultured in soil extract medium added of lindane 100 μg L−1, obtaining a maximal growth of 0.065 mg mL−1, similar to the control, with a highest lindane remotion of 70.4 % at 30°C and pH 7. When different initial pesticide concentrations (100, 150, 200, and 300 μg L−1) were added in soil medium, an increment of the microbial growth was detected in all the concentrations tested. Also a diminution of the residual lindane concentration was determined in the soil samples in relation to controls without bacteria (29.1, 78.0, 38.8, and 14.4 %, respectively). Besides, it was determined the optimum Streptomyces sp. M7 inoculum when lindane 100 μg kg−1soil was added to the soil sample. The optimum inoculum was 2 g kg−1 soil for obtaining the most efficiently bioremediation process: the lindane removal in these conditions was 67.8 % at 28 days of incubation. Later it was considered necessary to know the pesticide effects on maize plants seeded in lindane-contaminated soil previously inoculated with Streptomyces sp. M7. Lindane concentrations of 100, 200, and 400 mg kg−1 soil did not affect the germination and vigor index of maize plants seeded in contaminated soils without Streptomyces sp. M7. When this microorganism was inoculated at the same conditions, a better vigor index was observed and 68 % of lindane was removed. In this connection, Streptomyces sp. M7 was grown on culture medium in presence of root exudates of maize, spiked with 1.66 mg L−1 of lindane. The highest level of pesticide removal obtained on this condition suggests that root exudates enhanced removal of lindane by the bacterium. On the other hand, little information is available on the ability of biotransformation of organochlorine pesticides by actinomycete strains. It was demonstrated that Streptomyces sp. M7 possesses the LinA enzyme that catalyzes dehydrochlorination of lindane to 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN) via γ-pentachlorocyclohexene (γ-PCCH). These results confirm that actinomycete strains could be considered one of the most promising bacterial groups for lindane biodegradation in contaminated environment. Particularly, Streptomyces sp. M7 could be used for this purpose.Fil: Alvarez, Analia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Fuentes, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad del Norte Santo Tomás de Aquino. Facultad de Ciencias de la Salud; ArgentinaFil: Cuozzo, Sergio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Sáez, Juliana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Amoroso, Maria Julia del R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad del Norte Santo Tomás de Aquino. Facultad de Ciencias de la Salud; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentin
    corecore