38 research outputs found

    Direct Preparation of Amides from Amine Hydrochloride Salts and Orthoesters: A Synthetic and Mechanistic Perspective

    No full text
    <div><p></p><p>The conversion of a wide range of primary and secondary aliphatic and a few arylamine hydrochloride salts to their corresponding acetamides with trimethyl orthoacetate is described. Mechanistic studies using NMR and gas chromatography–mass spectrometry techniques indicate these reactions proceed via an <i>O</i>-methylimidate intermediate that undergoes in situ demethylation by chloride, affording the corresponding acetamides. Synthetically, this reaction represents a practical, high-yielding protocol with a simple workup for the rapid conversion of amine hydrochloride salts to acetamides.</p></div

    Eosinophilic leukemia in 3 African pygmy hedgehogs (Atelerix albiventris) and validation of Luna stain

    No full text
    Neoplasia is usually encountered in the African pygmy hedgehog at a mean age of 3.5 y, and malignancy is common. Myelogenous leukemias are rarely reported in hedgehogs. We describe 3 cases of eosinophilic leukemia in adult, middle-aged (mean age: 2.3 y) hedgehogs, for which prognosis appears grave. In 1 case, attempted treatment was unsuccessful, and in all 3 cases, the disease course was rapid and all died soon after diagnosis. Blood smear evaluation, along with complete blood count, was critical in making the diagnosis in all cases. Luna stain was validated and used to better visualize eosinophils in cytologic and histologic sections. Electron microscopy confirmed the presence of specific granules in hedgehog eosinophils. </jats:p

    A Comparative Oncology Study of Iniparib Defines Its Pharmacokinetic Profile and Biological Activity in a Naturally-Occurring Canine Cancer Model

    Get PDF
    <div><p>Development of iniparib as an anti-cancer agent was hindered in part by lingering questions regarding its mechanism of action, the activity of its metabolites, and their potential accumulation in tumors. Due to strong similarities in metabolism of iniparib between humans and dogs, a veterinary clinical trial in pet dogs with spontaneous cancers was designed to answer specific questions pertaining to pharmacokinetic exposures and tolerability of iniparib. Dogs were treated with iniparib alone and in combination with carboplatin chemotherapy. Iniparib doses ranged between 10–70 mg/kg intravenously (IV). Plasma, tumor and normal tissue samples were collected before and at various time points scheduled after exposure for pharmacokinetic and biologic analysis. The primary endpoints included characterization of dose-limiting toxicities (DLT) and determination of the drug exposures that could be achieved in both normal and tumor tissues. Nineteen dogs were treated. DLT included fever, anorexia, diarrhea, neutropenia, and thrombocytopenia; most effects were attributable to carboplatin based on the timing of adverse event onset. The maximum tolerated dose (MTD) of iniparib was not identified. Moderate to high variability in plasma exposure was noted for iniparib and all metabolites between animals. When quantifiable, iniparib and metabolite plasma:tumor ratios were < 0.088 and <1.7, respectively. In this study, iniparib was well tolerated as a single agent and in combination with carboplatin over a range of doses. However, clinically relevant concentrations of the parent drug and selected metabolites were not detectable in canine tumor tissues at any studied dose, thus eliminating expectations for clinical responses in dogs or humans. Negative clinical trials in humans, and the uncertainties of its mechanism of action, ultimately led to the decision to stop clinical development of the drug. Nevertheless, the questions that can be asked and answered within the comparative oncology approach are evident from this successfully executed comparative clinical trial and exemplify the value of such studies in drug development.</p></div
    corecore