351 research outputs found

    Lazy Fault Detection for Redundant MPI

    Get PDF
    As the scale of supercomputers grows, it is becoming increasingly important for software to efficiently withstand hardware and software faults. Process replication is one resilience technique, but typical implementations require replicas to stay closely synchronized with each other. We propose algorithms to lazily detect faults in replicated MPI applications, allowing for more flexibility in replica scheduling and potential power savings. Evaluation shows that, when all processes are operated at full power, this approach allows applications to complete substantially faster as compared to using a synchronized model, and often as fast as in non-replicated execution

    Sports involvement, injury history, and non‐medical use of prescription opioids among college students: An analysis with a national sample

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141733/1/ajad12657.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141733/2/ajad12657_am.pd

    Persistent starspot signals on M dwarfs: multi-wavelength Doppler observations with the Habitable-zone Planet Finder and Keck/HIRES

    Get PDF
    Young, rapidly-rotating M dwarfs exhibit prominent starspots, which create quasiperiodic signals in their photometric and Doppler spectroscopic measurements. The periodic Doppler signals can mimic radial velocity (RV) changes expected from orbiting exoplanets. Exoplanets can be distinguished from activity-induced false positives by the chromaticity and long-term incoherence of starspot signals, but these qualities are poorly constrained for fully-convective M stars. Coherent photometric starspot signals on M dwarfs may persist for hundreds of rotations, and the wavelength dependence of starspot RV signals may not be consistent between stars due to differences in their magnetic fields and active regions. We obtained precise multi-wavelength RVs of four rapidly-rotating M dwarfs (AD Leo, G 227-22, GJ 1245B, GJ 3959) using the near-infrared (NIR) Habitable-zone Planet Finder, and the optical Keck/HIRES spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the Las Cumbres Observatory (LCO) network of telescopes. We found that all four stars exhibit large spot-induced Doppler signals at their rotation periods, and investigated the longevity and optical-to-NIR chromaticity for these signals. The phase curves remain coherent much longer than is typical for Sunlike stars. Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV modulation consistent in both phase and amplitude. In general, though, we find that the NIR amplitudes are lower than their optical counterparts. We conclude that starspot modulation for rapidly-rotating M stars frequently remains coherent for hundreds of stellar rotations, and gives rise to Doppler signals that, due to this coherence, may be mistaken for exoplanets.Comment: Accepted for publication in the Astrophysical Journa

    Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health

    Get PDF
    Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper

    Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health

    Get PDF
    Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper

    Persistent Starspot Signals on M Dwarfs: Multiwavelength Doppler Observations with the Habitable-zone Planet Finder and Keck/HIRES

    Get PDF
    Young, rapidly rotating M dwarfs exhibit prominent starspots, which create quasiperiodic signals in their photometric and Doppler spectroscopic measurements. The periodic Doppler signals can mimic radial velocity (RV) changes expected from orbiting exoplanets. Exoplanets can be distinguished from activity-induced false positives by the chromaticity and long-term incoherence of starspot signals, but these qualities are poorly constrained for fully convective M stars. Coherent photometric starspot signals on M dwarfs may persist for hundreds of rotations, and the wavelength dependence of starspot RV signals may not be consistent between stars due to differences in their magnetic fields and active regions. We obtained precise multiwavelength RVs of four rapidly rotating M dwarfs (AD Leo, G227-22, GJ 1245B, GJ 3959) using the near-infrared (NIR) Habitable-zone Planet Finder and the optical Keck/HIRES spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the Las Cumbres Observatory network of telescopes. We found that all four stars exhibit large spot-induced Doppler signals at their rotation periods, and investigated the longevity and optical-to-NIR chromaticity for these signals. The phase curves remain coherent much longer than is typical for Sunlike stars. Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV modulation consistent in both phase and amplitude. In general, though, we find that the NIR amplitudes are lower than their optical counterparts. We conclude that starspot modulation for rapidly rotating M stars frequently remains coherent for hundreds of stellar rotations and gives rise to Doppler signals that, due to this coherence, may be mistaken for exoplanets
    corecore