295 research outputs found

    EUV ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization and electron energy-loss spectra

    Get PDF
    The ionization dynamics of pure He nanodroplets irradiated by EUV radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence (VMI-PEPICO) spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He+, He2+, and He3+. Surprisingly, below the autoionization threshold of He droplets we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we evidence inelastic collisions of photoelectrons with the surrounding He atoms in the droplets

    Synchrotron radiation photoionization mass spectrometry of laser ablated species

    Get PDF
    The present paper describes an experimental apparatus suitable to create and study free clusters by combining laser ablation and synchrotron radiation. First tests on sulfur samples, S, showed the production, through laser ablation, of neutral Sn clusters (n = 1–8). These clusters were ionized using synchrotron radiation at photon energies from 160 eV to 175 eV, across the S 2p core edge. The feasibility of such combined ablation–synchrotron radiation experiments is demonstrated, opening new possibilities on the investigation of free clusters and radical

    Penning ionization of doped helium nanodroplets following EUV excitation

    Full text link
    Helium nanodroplets are widely used as a cold, weakly interacting matrix for spectroscopy of embedded species. In this work we excite or ionize doped He droplets using synchrotron radiation and study the effect onto the dopant atoms depending on their location inside the droplets (rare gases) or outside at the droplet surface (alkali metals). Using photoelectron-photoion coincidence imaging spectroscopy at variable photon energies (20-25 eV), we compare the rates of charge-transfer to Penning ionization of the dopants in the two cases. The surprising finding is that alkali metals, in contrast to the rare gases, are efficiently Penning ionized upon excitation of the (n=2)-bands of the host droplets. This indicates rapid migration of the excitation to the droplet surface, followed by relaxation, and eventually energy transfer to the alkali dopants

    VUV and X-ray coherent light with tunable polarization from single-pass free-electron lasers

    Full text link
    Tunable polarization over a wide spectral range is a required feature of light sources employed to investigate the properties of local symmetry in both condensed and low-density matter. Among new-generation sources, free-electron lasers possess a unique combination of very attractive features, as they allow to generate powerful and coherent ultra-short optical pulses in the VUV and X-ray spectral range. However, the question remains open about the possibility to freely vary the light polarization of a free-electron laser, when the latter is operated in the so-called nonlinear harmonic-generation regime. In such configuration, one collects the harmonics of the free-electron laser fundamental emission, gaining access to the shortest possible wavelengths the device can generate. In this letter we provide the first experimental characterization of the polarization of the harmonic light produced by a free-electron laser and we demonstrate a method to obtain tunable polarization in the VUV and X-ray spectral range. Experimental results are successfully compared to those obtained using a theoretical model based on the paraxial solution of Maxwell's equations. Our findings can be expected to have a deep impact on the design and realization of experiments requiring full control of light polarization to explore the symmetry properties of matter samples

    On the production of N-2(+) ions at the N 1s edge of the nitrogen molecule

    Get PDF
    The N+2 ion yield of the N2 molecule has been measured at the N 1s → Rydberg excitations. It displays Fano-type line shapes due to interference between direct outer-valence photoionization and participator decay of the core-excited Rydberg states. The N+2 ion yield is compared with the total intensity of the outer-valence photoelectron lines obtained recently with electron spectroscopy (KivimĂ€ki et al 2012 Phys. Rev. A 86 012516). The increasing difference between the two curves at the higher core-to-Rydberg excitations is most likely due to soft x-ray emission processes that are followed by autoionization. The results also suggest that resonant Auger decay from the core–valence doubly excited states contributes to the N+2 ion yield at the photon energies that are located on both sides of the N 1s ionization limit

    An experimental and theoretical study of the resonant Auger spectrum of the ethene molecule

    Get PDF
    Resonant Auger spectra of the ethene molecule excited at energies across the C1s → π* energy band are reported. Our measurements address the unexpected variation of the intensity of the A state with respect to the other singly ionized valence states. An approach, based on group theory and calculations using Coulomb 4-center integrals, is proposed to explain the behaviour of the intensity of the ground state and excited states of the ion upon resonant excitation. The new method provides a calculationally inexpensive route to predict relative intensities of different resonant Auger bands in polyatomic molecules, without the need for an exhaustive knowledge of the potential energy surfaces of the electronic states involved

    An experimental and theoretical investigation of XPS and NEXAFS of nicotine, nicotinamide, and nicotinc acid

    Get PDF
    The electronic structures of nicotine, nicotinic acid and nicotinamide have been studied by valence photoemission spectroscopy (PES), core X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) and interpreted with the aid of quantum chemical calculations. Nicotinamide and nicotinic acid are closely related and show correspondingly similar spectral features, while nicotine is both structurally and spectroscopically diverse

    Valence photoionization of the N2 molecule in the region of the N 1s→Rydberg excitations

    Get PDF
    The intensities of the X and A valence photoelectron lines of N2 have been found to display Fano line shapes as a function of photon energy around the N 1s→ Rydberg excitations. The vibrational intensity distributions of these photoelectron lines change at the N 1s→3sσ and 3pπ resonances. These effects indicate interference between direct and resonant photoionization channels. Our numerical simulations reproduce quite well the experimental results
    • 

    corecore