12 research outputs found

    How Atomic Steps Modify Diffusion and Inter-adsorbate Forces: Empirical Evidence from Hopping Dynamics in Na/Cu(115).

    Get PDF
    We followed the collective atomic-scale motion of Na atoms on a vicinal Cu(115) surface within a time scale of pico- to nanoseconds using helium spin echo spectroscopy. The well-defined stepped structure of Cu(115) allows us to study the effect that atomic steps have on the adsorption properties, the rate for motion parallel and perpendicular to the step edge, and the interaction between the Na atoms. With the support of a molecular dynamics simulation we show that the Na atoms perform strongly anisotropic 1D hopping motion parallel to the step edges. Furthermore, we observe that the spatial and temporal correlations between the Na atoms that lead to collective motion are also anisotropic, suggesting the steps efficiently screen the lateral interaction between Na atoms residing on different terraces.This work was supported by the German-Israeli Foundation for Scientific Research and Development, the Israeli Science Foundation (Grant No. 2011185), the German Science Foundation (DFG) through contract MO 960/18-1, the Cluster of Excellence RESOLV (EXC 1069), and the European Research Council under the European Union’s seventh framework program (FP/2007-2013)/ERC Grant 307267.This is the author accepted manuscript. The final version is available from ACS via http://dx.doi.org/10.1021/acs.jpclett.5b0193

    Two-Dimensional Wetting of a Stepped Copper Surface.

    Get PDF
    Highly corrugated, stepped surfaces present regular 1D arrays of binding sites, creating a complex, heterogeneous environment to water. Rather than decorating the hydrophilic step sites to form 1D chains, water on stepped Cu(511) forms an extended 2D network that binds strongly to the steps but bridges across the intervening hydrophobic Cu(100) terraces. The hydrogen-bonded network contains pentamer, hexamer, and octomer water rings that leave a third of the stable Cu step sites unoccupied in order to bind water H down close to the step dipole and complete three hydrogen bonds per molecule.Herchel Smith fun

    H 2

    No full text
    Scanning tunneling microscopy (STM) and thermal desorption spectroscopy (TDS) show that deposition of water molecules onto epitaxial graphene on Ir(111) leads to the formation of an extended and well ordered array of amorphous water clusters. We trace the evolution of this cluster phase as dependent on water exposure and deposition temperature. The formation of separated clusters is due to binding energy differences within the moire superstructure

    Crossing the Blood–Brain Barrier: Recent Advances in Drug Delivery to the Brain

    No full text
    corecore