93 research outputs found

    Allanite in Variscan Post-Collisional Lamprophyre Dykes from Les Guilleries (NE Iberia) as a Part of Rare Earth Elements Recycling in Collisional Orogens

    Get PDF
    Recent studies of Late Permian calc-alkaline lamprophyre dykes located in the Les Guilleries Paleozoic massif of the Catalan Coastal Range have revealed that allanite is present as the main REE-bearing accessory phase, which is the object of this study. The lamprophyre dykes are amphibole-plagioclase-dominated spessartites with a wide variety of accessory phases, including titanite, ilmenite, allanite, fluorapatite, spinel, zircon, and sulfides, and show complex alteration textures related to secondary albite, chlorite, epidote, titanite and calcite. The allanite crystal composition, analyzed by SEM-EPMA and LA-ICP-MS, evidences the solid solution between epidote and allanite with a ferriallanite component, similar to what is found in Variscan post-collisional granitoids from western Europe. However, heterogeneity in crystal shapes, sizes, type of zoning, dissolution embayment textures, growth of epidote coronas, mineral paragenesis, and the unique geochemical characteristics of allanite crystals suggest multiple crystallization events. At least two types of allanite-epidote composite grains have been identified: allanite Type I, with regular allanite-epidote core-to-rim zoning and a secondary allanite rim; and allanite Type II, with anhedral allanite cores surrounded by epidote coronas. Additionally, irregular zoning, complex dissolution textures and REE redistribution suggest the occurrence of deuteric and/or post-magmatic processes, which are also common in Variscan post-collisional plutons from the Catalan Coastal Range and nearby Paleozoic massifs. Multivariate statistical analyses of major elements in allanite-epidote composite grains show a relationship between major textural and geochemical variations for three out of ten principal components, mainly related to cationic substitutions between ferriallanite-(Ce) and epidote, but also involving Mn and Ti(REE + Fe + Ti + Mg + Mn = Al + Ca + Fe). The allanite U-Pb-Th- weighted mean age of 265 ± 15 Ma (MSWD = 0.57) is roughly similar to the age of emplacement of the lamprophyres in the upper crust in the mid-late Permian, and coincides with the period following the main tectonometamorphic and magmatic events of the post-collisional evolution in the Catalan Coastal Range. Th/U and La/Sm ratios suggest a metamorphic origin for most allanite grains, but a combination of metamorphic processes prior to partial melting, early-late magmatic crystallization, and/or post-magmatic hydrothermal processes is the most plausible explanation to account for the diversity of allanite grains in Les Guilleries lamprophyres

    Origin and timing of stratabound dolomitization in the Cretaceous carbonate ramp of Benicàssim

    Get PDF
    Hydrothermal dolomitization is one of the most important processes that may enhance or degrade carbonate porosity and permeability. Burial, high emperature or hydrothermal dolomite forms due to the interaction of one or more solutions, mainly seawater-derived or deep brines, with limestone. The Early Cretaceous Benicassim ramp (Maestrat Basin, E Spain) is an excellent outcrop analog for partially dolomitized petroleum reservoirs. In this area seismic-scale sub-stratiform dolomitized bodies extend for several kilometers, away from large-scale faults, in Aptian limestones (Fig. 1). In the present work the Benicassim ramp is used as a case study to characterize dolomite events and to evaluate controls on dolomitization via reactive transport simulations

    Petrography and geochemistry of fault-controlled hydrothermal dolomites in the Riópar area (Prebetic Zone, SE Spain)

    Get PDF
    The present paper reports the first detailed petrographical and geochemical studies of hydrothermal dolomites related to MVT Zn-(Fe-Pb) deposits in the Riópar area (Mesozoic Prebetic Basin, SE Spain), constraining the nature, origin and evolution of dolomitizing and ore-forming fluids. Mapping and stratigraphic studies revealed two stratabound dolostone geobodies connected by other patchy bodies, which replace carbonate units of Upper Jurassic to Lower Cretaceous ages. These dolostones are associated to the W-E trending San Jorge fault, indicating a main tectonic control for fluid flow. Seven different dolomite types were identified: i) matrix-replacive planar-s (ReD-I); ii) matrix-replacive planar-e (ReD-II); iii) planar-e sucrosic cement (SuD); iv) non-planar grey saddle dolomite cement (SaD-I) pre-dating Zn-(Fe-Pb) sulfides; v) non-planar milky to pinkish saddle dolomite cement (SaD-II) post-dating Zn-(Fe-Pb) ores; vi) ore-replacive planar-e porphyrotopic (PoD); and vii) planar-s cloudy cement (CeD). Meteoric calcite types were also recognized. The different dolomite types are isotopically characterized by: i) depleted δ18O (from +25.1 to +27.6¿ V-SMOW) and δ13C (from -2.3 to +0.9¿ V-PDB) values compared to Upper Jurassic to Lower Cretaceous limestone signature (δ18O: +27.6 to +30.9¿ V-SMOW; δ13C: +0.5 to +3.2¿ V-PDB); and ii) 87Sr/86Sr ratios for the main dolomitization phases (ReD and SuD: 0.70736-0.70773) close to the Jurassic and Cretaceous carbonate values (0.70723-0.70731) whereas more radiogenic values (0.70741-0.70830) for saddle dolomites (SaD) related to the Zn-(Fe-Pb) sulfide mineralization prevailed after fluid interaction with Rb-bearing minerals. Microthermometrical studies on two-phase liquid and vapor fluid inclusion populations in planar and non-planar dolomites and sphalerite show homogenization temperatures between 150 and 250ºC. These data indicate that both planar and non-planar dolomite textures formed at high-temperatures under hydrothermal conditions in deep-burial diagenetic environments. The main dolomitizing phase (ReD-I/ReD-II and SaD-I) shows low to moderate fluid inclusions salinity (5 to 14 wt.% eq. NaCl), whereas the dolomitization related to ore precipitation (sphalerite and SaD-II) spreads to higher salinity values (5 to 25 wt.% eq. NaCl). These data may respond to a mixing between a low salinity fluid (fluid A, less than 5 wt.% eq. NaCl) and a more saline brine (fluid B, more than 25 wt.% eq. NaCl) at different fluid proportions

    Cerro Quema (Azuero Peninsula, Panama): geology, alteration, mineralization and geochronology of a volcanic dome-hosted high sulfidation Au-Cu deposit.

    Get PDF
    Cerro Quema (Azuero Peninsula, SW Panama) is a high sulfidation epithermal Au-Cu deposit hosted by a dacite dome complex of the Río Quema Formation (Late Campanian to Maastrichtian), a fore-arc basin sequence. Mineral resource estimate (Indicated + Inferred) are 30.86 Mt @ 0.73 g/t Au, containing 728,000 Oz Au (including 76.900 Oz AuEq of Cu ore). Hydrothermal alteration and mineralization are controlled by an E trending regional fault system. Hydrothermal alteration consists of an inner zone of vuggy quartz with locally developed advanced argillic alteration, enclosed by a well-developed zone of argillic alteration, grading to an external halo of propylitic alteration. Mineralization produced dissemination and microveinlets of pyrite and minor chalcopyrite, enargite and tennantite, with traces of sphalerite, crosscut by late stage base metal veins. New 40Ar/39Ar data of igneous rocks combined with biostratigraphic ages of the volcanic sequence indicate a maximum age of Lower Eocene (~55-49 Ma) for the Cerro Quema deposit. It was probably triggered by the emplacement of an underlying porphyry-like intrusion associated with the Valle Rico batholith. The geologic model suggests that in the Azuero Peninsula high sulfidation epithermal mineralization occur in the Cretaceous-Paleogene fore-arc. This consideration should be taken into account when exploring for this deposit type in similar geologic terranes

    Sulfur and lead isotope systematics: Implications for the genesis of the Riópar Zn-(Fe-Pb) carbonate-hosted deposit (Prebetic Zone, SE Spain)

    Get PDF
    The Zn-(Fe-Pb) deposits of the Riópar area (Prebetic Zone, SE Spain) are hosted by dolostones that replace Berriasian to Valanginian (Upper Jurassic-Lower Cretaceous) limestones. Mineralization consists of hypogene sphalerite, marcasite and galena, and supergene calamine zones. The hypogene ores are associated with a saddle dolomite gangue. The ore bodies occur as discordant and stratiform lenses, ore-cemented breccias, cm- to mm-wide veins and veinlets, disseminations and stylolite porosity filling within the host dolomites. The main ore controls include stratigraphy and/or lithology, tectonics (faults, fractures and breccias) and availability of metals and sulfur. The morphologies and epigenetic character of the hypogene ore bodies are consistent with the classification of this mineralization as a Mississippi Valley-type (MVT) deposit. The Ga/Ge geothermometer in sphalerite yielded a temperature range of 194-252ºC, which represents the temperature of the source region of the ore solution. This value is comparable to the temperature obtained in the ore deposition site, 159±15ºC from the Δ34S geothermometer in sphalerite galena pairs. This similitude points to a hydrothermal fluid that did not cool down significantly during flow from the fluid reservoir area to the precipitation site. δ34S values of base-metal sulfides (-7.5 to +3.5 ¿) are consistent with thermochemical reduction of Triassic sulfate (seawater and/or derived from dissolution of evaporites) by interaction with organic compounds (e.g., hydrocarbons, methane), which reduced sulfate to sulfide in the deposition site. The lead isotope ratios (206Pb/204Pb = 18.736-18.762; 207Pb/204Pb = 15.629-15.660; 208Pb/204Pb = 38.496-38.595) of galena suggest that Pb, and probably other metals as Zn, is derived from continental crustal rocks. On the other hand, these relations points to an unique metal source probably derived from the Paleozoic basement rocks. The relationship between bedding-parallel stylolites, dolomitization, sulfide precipitation and Alpine tectonic affecting the MVT ore, suggests a relative timing range for the mineralization in the Riópar area of 95 to 20 Ma (Upper Cretaceous-Tertiary). The sulfide mineralization and the associated dolomitization are thus explained by the contribution of two fluids that mixed in different proportions during dolomitization and mineralization: i) a fluid probably derived from Cretaceous seawater saturating Mesozoic sediments (Fluid A), characterized by being dilute and initially low temperature, which should have contained organic rich compounds in the ore deposition site (e.g., hydrocarbons and CH4 dissolved gas); and ii) a high salinity hydrothermal brine (Fluid B) rich in both metals and sulfate, circulated through the Paleozoic basement. During the pre-ore dolomitizing stage the fluid phase was dominated by the diluted fluid (Fluid A > Fluid B), whereas in a later fluid pulse, the proportion of the high salinity fluid increased (Fluid A < Fluid B) which allowed sulfide precipitation. MVT exploration in the Prebetic Zone should focus towards the SW of the Riópar mines, in the vicinity of the Alto Guadalquivir-San Jorge fault

    Origin and evolution of mineralizing fluids and exploration of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama) from a fluid inclusion and stable isotope perspective.

    Get PDF
    Cerro Quema is a high sulfidation epithermal Au-Cu deposit with a measured, indicated and inferred resource of 35.98 Mt. @ 0.77 g/t Au containing 893,600 oz. Au (including 183,930 oz. Au equiv. of Cu ore). It is characterized by a large hydrothermal alteration zone which is interpreted to represent the lithocap of a porphyry system. The innermost zone of the lithocap is constituted by vuggy quartz with advanced argillic alteration locally developed on its margin, enclosed by a well-developed zone of argillic alteration, grading to an external halo of propylitic alteration. The mineralization occurs in the form of disseminations and microveinlets of pyrite, chalcopyrite, enargite, tennantite, and trace sphalerite, crosscut by quartz, barite, pyrite, chalcopyrite, sphalerite and galena veins. Microthermometric analyses of two phase (L + V) secondary fluid inclusions in igneous quartz phenocrysts in vuggy quartz and advanced argillically altered samples indicate low temperature (140-216 °C) and low salinity (0.5-4.8 wt% NaCl eq.) fluids, with hotter and more saline fluids identified in the east half of the deposit (Cerro Quema area). Stable isotope analyses (S, O, H) were performed on mineralization and alteration minerals, including pyrite, chalcopyrite, enargite, alunite, barite, kaolinite, dickite and vuggy quartz. The range of δ34S of sulfides is from −4.8 to −12.7¿, whereas δ34S of sulfates range from 14.1 to 17.4¿. The estimated δ34SΣS of the hydrothermal fluid is−0.5¿. Within the advanced argillic altered zone the δ34Svaluesof sulfides and sulfates are interpreted to reflect isotopic equilibriumat temperatures of ~240 °C. The δ18O values of vuggy quartz range from9.0 to 17.5¿, and the δ18O values estimated for the vuggy quartz-forming fluid range from−2.3 to 3.0¿, indicating that it precipitated frommixing ofmagmatic fluidswith surficial fluids. The δ18O of kaolinite ranges from12.7 to 18.1¿and δD from−103.3 to −35.2¿, whereas the δ18O of dickite varies between 12.7 and 16.3¿ and δD from−44 to −30. Based on δ18OandδD, two types of kaolinite/dickite can be distinguished, a supergene type and a hypogene type. Combined, the analytical data indicate that the Cerro Quema deposit formed from magmatic-hydrothermal fluids derived from a porphyry copper-like intrusion located at depth likely towards the east of the deposit. The combination of stable isotope geochemistry and fluid inclusion analysis may provide useful exploration vectors for porphyry copper targets in the high sulfidation/lithocap environment

    Geology of the Cerro-Quema Au-Cu deposit (Azuero Peninsula, Panama)

    Get PDF
    The Cerro Quema district, located on the Azuero Peninsula, Panama, is part of a large regional hydrothermal system controlled by regional faults striking broadly E-W, developed within the Río Quema Formation. This formation is composed of volcanic, sedimentary and volcano-sedimentary rocks indicating a submarine depositional environment, corresponding to the fore-arc basin of a Cretaceous-Paleogene volcanic arc. The structures observed in the area and their tectono-stratigraphic relationship with the surrounding formations suggest a compressive and/or transpressive tectonic regime, at least during Late Cretaceous-Oligocene times. The igneous rocks of the Río Quema Formation plot within the calc-alkaline field with trace and rare earth element (REE) patterns of volcanic arc affinity. This volcanic arc developed on the Caribbean large igneous province during subduction of the Farallon Plate. Mineralization consists of disseminations of pyrite and enargite as well as a stockwork of pyrite and barite with minor sphalerite, galena and chalcopyrite, hosted by a subaqueous dacitic lava dome of the Río Quema Formation. Gold is present as submicroscopic grains and associated with pyrite as invisible gold. A hydrothermal alteration pattern with a core of advanced argillic alteration (vuggy silica with alunite, dickite, pyrite and enargite) and an outer zone of argillic alteration (kaolinite, smectite and illite) has been observed. Supergene oxidation overprinted the hydrothermal alteration resulting in a thick cap of residual silica and iron oxides. The ore minerals, the alteration pattern and the tectono-volcanic environment of Cerro Quema are consistent with a high sulfidation epithermal system developed in the Azuero peninsula during pre-Oligocene times

    Mineralogical and geochemical characterization of the Riópar non-sulfide Zn-(Fe-Pb) deposits (Prebetic Zone, SE Spain)

    Get PDF
    The present paper reports the first detailed petrological and geochemical study of non-sulfide Zn-(Fe-Pb) deposits in the Riópar area (Prebetic Zone of the Mesozoic Betic Basin, SE Spain), constraining the origin and evolution of ore-forming fluids. In Riópar both sulfide and non-sulfide Zn-(Fe-Pb) ('calamine') ores are hosted in hydrothermally dolomitized Lower Cretaceous limestones. The hypogene sulfides comprise sphalerite, marcasite and minor galena. Calamine ores consist of Zn-carbonates (smithsonite and scarce hydrozincite), associated with abundant Fe-(hydr)oxides (goethite and hematite) and minor Pb-carbonates (cerussite). Three smithsonite types have been recognized: i) Sm-I consists of brown anhedral microcrystalline aggregates as encrustations replacing sphalerite; ii) Sm-II refers to brownish subhedral aggregates of rugged appearance related with Fe oxi-hydroxides in the surface crystals, which replace extensively sphalerite; and iii) Sm-III smithsonite appears as coarse grayish botryoidal aggregates in microkarstic cavities and porosity. Hydrozincite is scarce and appears as milky white botryoidal encrustations in cavities replacing smithsonite. Also, two types of cerussite have been identified: i) Cer-I cerussite consists of fine crystals replacing galena along cleavage planes and crystal surfaces; and ii) Cer-II conforms fine botryoidal crystals found infill porosity. Calcite and thin gypsum encrustations were also recognized. The field and petrographic observations of the Riópar non-sulfide Zn-(Fe-Pb) revealed two successive stages of supergene ore formation under meteoric fluid processes: i) 'gossan' and 'red calamine' formation in the uppermost parts of the ore with deposition of Fe-(hydr)oxides and Zn- and Pb-carbonates (Sm-I, Sm-II and Cer-I), occurring as direct replacements of Zn-Pb sulfides; and ii) 'gray calamine' ore formation with deposition of Sm-III, Cer-II and hydrozincite infilling microkarst cavities and porosity. The stable isotope variation of Riópar smithsonite is very similar to those obtained in other calamine-ore deposits around the world. Their C-O isotope data (δ18O: +27.8 to +29.6¿ V-SMOW; δ13C: -6.3 to +0.4¿ V-PDB), puts constrains on: i) the oxidizing fluid type, which was of meteoric origin with temperatures of 12 to 19ºC, suggesting a supergene weathering process for the calamine-ore formation under a temperate climate; and ii) the carbon source, that resulted from mixing between two CO2 components derived from: the dissolution of host-dolomite (13C-enriched source) and vegetation decomposition (13C-depleted component)

    Manganese compounds with phthalate and terephthalate ligands: Synthesis, crystal structure, magnetic properties and catalase activity

    Full text link
    The reactivity of carboxybenzoic acids substituted in ortho, meta and para positions (phthalic, isophthalic and terephthalic acids) has been explored. These acids have been used for the synthesis of dinuclear MnIII and polynuclear MnII compounds, obtaining unexpected results. From all the reactions, one dinuclear MnIII compound, [{Mn(H2O)(phen)}2(l-2-COOHC6H4COO)2(l-O)](ClO4)2 (1), one mixed valence compound, [{Mn(phen)2}2(l-O)2](NO3)3 (2), and four MnII compounds, [{Mn(H2O)(phen)2}2(l-4-COOC6H4- COO)](NO3)2 (3), [Mn3(l-4-COOC6H4COO)3(bpy)2]n (4), [{Mn(phen)2}2(l-2-COOHC6H4COO)2](ClO4)2 (5) and [Mn(l-2-COOC6H4COO)(H2O)2(phen)]n (6), (phen = 1,10-phenanthroline, bpy = 2,20-bipyridine) have been obtained and characterised by X-ray diffraction, showing different coordination modes for the carboxylate ligand: a bidentate bridge in a syn syn, syn-anti or anti-anti mode, a bis-monodentate bridge and a bis-bidentate bridge. The six compounds show antiferromagnetic coupling, with magnetic interaction constants of 3.7 and 332.5 cm 1 for the dinuclear MnIII (1) and MnIIIMnIV (2) compounds and 0.04, 4.5, 1.5 and 0.55 cm 1 for MnII compounds 4-6. Each MnII compound shows a different EPR spectrum at 4 K, which has been simulated including the ZFS parameters. The catalase activity of the compounds with phthalate and terephthalate ligands has been studied, the former being less active than the latter

    Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicàssim outcrop analogue (Maestrat Basin, E Spain)

    Get PDF
    The mechanisms responsible for the formation of huge volumes of dolomitized rocks associated with faults are not well understood. We present a case study for high-temperature dolomitization of an Early Cretaceous (Aptian-Albian) ramp in Benicàssim (Maestrat basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults. This work aims at evaluating different Mg sources for dolomitization, estimating the reactivity of dolomitizing fluids at variable temperature and quantifying the required versus available fluid volumes to account for the Benicàssim dolostones. Field relationships, stable 13C and 18O isotopes, as well as radiogenic 87Sr/86Sr isotopes, indicate that dolomitization at Benicàssim was produced by a high temperature fluid (> 80ºC). 13C and 18O isotopic compositions for dolomite vary from +0.5 and +2.9 V-PDB and from +21.1 and +24.3 V-SMOW, respectively. A Mg source analysis reveals that the most likely dolomitizing fluid was seawater-derived brine that interacted with underlying Triassic red beds and Paleozoic basement. Geochemical models suggest that evolved seawater can be considerably more reactive than high-salinity brines, and that the maximum reactivity occurs at about 100ºC. Mass-balance calculations indicate that interstitial fluids with high pressure and/or high temperature relative to the normal geothermal gradient cannot account for the volume of dolomite at Benicàssim. Instead a pervasive fluid circulation mechanism, like thermal convection, is required to provide a sufficient volume of dolomitizing fluid, which most likely occurred during the Late Cretaceous post-rift stage of the Maestrat Basin. This study illustrates the importance of fluid budget quantification to critically evaluate genetic models for dolomitization and other diagenetic processes
    corecore