27 research outputs found

    Identification of Domains of the HPV11 E1 Protein Required for DNA Replication in Vitro

    Get PDF
    AbstractThe HPV E1 and E2 proteins along with cellular factors, are required for replication of the viral genome. In this study we show that in vitro synthesized HPV11 E1 can support DNA replication in a cell-free system and is able to cooperate with E2 to recruit the host polymerase α primase to the HPV origin in vitro. Deletion analysis revealed that the N-terminal 166 amino acids of E1, which encompass a nuclear localization signal and a cyclin E-binding motif, are dispensable for E1-dependent DNA replication and for recruitment of pol α primase to the origin in vitro. A shorter E1 protein lacking the N-terminal 190 amino acids supported cell-free DNA replication at less than 25% the efficiency of wild-type E1 and was active in the pol α primase recruitment assay. An even shorter E1 protein lacking a functional DNA-binding domain due to a truncation of the N-terminal 352 amino acids was inactive in both assays despite the fact that it retains the ability to associate with E2 or pol α primase in the absence of ori DNA. We provide additional functional evidence that E1 interacts with pol α primase through the p70 subunit of the complex by showing that p70 can be recruited to the HPV origin by E1 and E2 in vitro, that the domain of E1 (amino acids 353–649) that binds to pol α primase in vitro is the same as that needed for interaction with p70 in the yeast two-hybrid system, and that exogenously added p70 competes with the interaction between E1 and pol α primase and inhibits E1-dependent cell-free DNA replication. On the basis of these results and the observation that pol α primase competes with the interaction between E1 and E2 in solution, we propose that these three proteins assemble at the origin in a stepwise process during which E1, following its interaction with E2, must bind to DNA prior to interacting with pol α primase

    Year in review in Intensive Care Medicine 2009: I. Pneumonia and infections, sepsis, outcome, acute renal failure and acid base, nutrition and glycaemic control

    Get PDF
    Journal ArticleReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Oral Bioavailability and In Vivo Efficacy of the Helicase-Primase Inhibitor BILS 45 BS against Acyclovir-Resistant Herpes Simplex Virus Type 1

    No full text
    This study investigated the oral bioavailability and efficacy of BILS 45 BS, a selective herpes simplex virus (HSV) helicase-primase inhibitor, against acyclovir (ACV)-resistant (ACV(r)) infections mediated by the HSV type 1 (HSV-1) dlsptk and PAA(r)5 mutant strains. In vitro, the compound was more potent than ACV against wild-type clinical and laboratory HSV-1 strains and ACV(r) HSV isolates, as determined by a standard plaque reduction assay, with a mean 50% effective concentration of about 0.15 μM. The oral bioavailability of BILS 45 BS in hairless mice was 49%, with a peak concentration in plasma of 31.5 μM after administration of a single dose of 25 mg/kg. Following cutaneous infection of nude mice, both the HSV-1 dlsptk and PAA(r)5 mutant strains induced significant, reproducible, and persistent cutaneous lesions that lasted for more than 2 weeks. Oral treatment with ACV (100 or 125 mg/kg/day, three times a day by gavage) did not affect either mutant-induced infection. In contrast, BILS 45 BS at an oral dose of 100 mg/kg/day almost completely abolished cutaneous lesions mediated by both ACV(r) HSV-1 mutants. The 50% effective doses of BILS 45 BS were 56.7 and 61 mg/kg/day against dlsptk- and PAA(r)5-induced infections, respectively. Taken together, our results demonstrate very effective oral therapy of experimental ACV(r) HSV-1 infections in nude mice and support the potential use of HSV helicase-primase inhibitors for the treatment of nucleoside-resistant HSV disease in humans
    corecore