3,665 research outputs found
RFI Identification and Mitigation Using Simultaneous Dual Station Observations
RFI mitigation is a critically important issue in radio astronomy using
existing instruments as well as in the development of next-generation radio
telescopes, such as the Square Kilometer Array (SKA). Most designs for the SKA
involve multiple stations with spacings of up to a few thousands of kilometers
and thus can exploit the drastically different RFI environments at different
stations. As demonstrator observations and analysis for SKA-like instruments,
and to develop RFI mitigation schemes that will be useful in the near term, we
recently conducted simultaneous observations with Arecibo Observatory and the
Green Bank Telescope (GBT). The observations were aimed at diagnosing RFI and
using the mostly uncorrelated RFI between the two sites to excise RFI from
several generic kinds of measurements such as giant pulses from Crab-like
pulsars and weak HI emission from galaxies in bands heavily contaminated by
RFI. This paper presents observations, analysis, and RFI identification and
excision procedures that are effective for both time series and spectroscopy
applications using multi-station data.Comment: 12 pages, 9 figures (4 in ps and 5 in jpg formats), Accepted for
publication in Radio Scienc
Searching for Hyperbolicity
This is an expository paper, based on by a talk given at the AWM Research
Symposium 2017. It is intended as a gentle introduction to geometric group
theory with a focus on the notion of hyperbolicity, a theme that has inspired
the field from its inception to current-day research
Detection of Bursts from FRB 121102 with the Effelsberg 100-m Radio Telescope at 5 GHz and the Role of Scintillation
FRB 121102, the only repeating fast radio burst (FRB) known to date, was
discovered at 1.4 GHz and shortly after the discovery of its repeating nature,
detected up to 2.4 GHz. Here we present three bursts detected with the 100-m
Effelsberg radio telescope at 4.85 GHz. All three bursts exhibited frequency
structure on broad and narrow frequency scales. Using an autocorrelation
function analysis, we measured a characteristic bandwidth of the small-scale
structure of 6.41.6 MHz, which is consistent with the diffractive
scintillation bandwidth for this line of sight through the Galactic
interstellar medium (ISM) predicted by the NE2001 model. These were the only
detections in a campaign totaling 22 hours in 10 observing epochs spanning five
months. The observed burst detection rate within this observation was
inconsistent with a Poisson process with a constant average occurrence rate;
three bursts arrived in the final 0.3 hr of a 2 hr observation on 2016 August
20. We therefore observed a change in the rate of detectable bursts during this
observation, and we argue that boosting by diffractive interstellar
scintillations may have played a role in the detectability. Understanding
whether changes in the detection rate of bursts from FRB 121102 observed at
other radio frequencies and epochs are also a product of propagation effects,
such as scintillation boosting by the Galactic ISM or plasma lensing in the
host galaxy, or an intrinsic property of the burst emission will require
further observations.Comment: Accepted to ApJ. Minor typos correcte
The MUCHFUSS photometric campaign
Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost
almost all of their hydrogen envelopes. This mass loss is often triggered by
common envelope interactions with close stellar or even substellar companions.
Cool companions like late-type stars or brown dwarfs are detectable via
characteristic light curve variations like reflection effects and often also
eclipses. To search for such objects we obtained multi-band light curves of 26
close sdO/B binary candidates from the MUCHFUSS project with the BUSCA
instrument. We discovered a new eclipsing reflection effect system
(~d) with a low-mass M dwarf companion ().
Three more reflection effect binaries found in the course of the campaign were
already published, two of them are eclipsing systems, in one system only
showing the reflection effect but no eclipses the sdB primary is found to be
pulsating. Amongst the targets without reflection effect a new long-period sdB
pulsator was discovered and irregular light variations were found in two sdO
stars. The found light variations allowed us to constrain the fraction of
reflection effect binaries and the substellar companion fraction around sdB
stars. The minimum fraction of reflection effect systems amongst the close sdB
binaries might be greater than 15\% and the fraction of close substellar
companions in sdB binaries might be as high as . This would result in a
close substellar companion fraction to sdB stars of about 3\%. This fraction is
much higher than the fraction of brown dwarfs around possible progenitor
systems, which are solar-type stars with substellar companions around 1 AU, as
well as close binary white dwarfs with brown dwarf companions. This might be a
hint that common envelope interactions with substellar objects are
preferentially followed by a hot subdwarf phase.Comment: accepted for A&
Time-Correlated Structure in Spin Fluctuations in Pulsars
We study statistical properties of stochastic variations in pulse arrival
times, timing noise, in radio pulsars using a new analysis method applied in
the time domain. The method proceeds in two steps. First, we subtract
low-frequency wander using a high-pass filter. Second, we calculate the
discrete correlation function of the filtered data. As a complementary method
for measuring correlations, we introduce a statistic that measures the
dispersion of the data with respect to the data translated in time. The
analysis methods presented here are robust and of general usefulness for
studying arrival time variations over timescales approaching the average
sampling interval. We apply these methods to timing data for 32 pulsars. In two
radio pulsars, PSRs B1133+16 and B1933+16, we find that fluctuations in arrival
times are correlated over timescales of 10 - 20 d with the distinct signature
of a relaxation process. Though this relaxation response could be
magnetospheric in origin, we argue that damping between the neutron star crust
and interior liquid is a more likely explanation. Under this interpretation,
our results provide the first evidence independent from pulsar spin glitches of
differential rotation in neutron stars. PSR B0950+08, shows evidence for
quasi-periodic oscillations that could be related to mode switching.Comment: 25 pages, Final journal version (MNRAS
Measuring Land Rights for a Sustainable Future
Land rights, both for individuals and for communities, are critical for achieving sustainable development. Security of land tenure and other rights to the land (sometimes held communally rather than individually) can accelerate poverty reduction, strengthen food security, and empower women. Land rights can reduce resource conflicts, as well as encourage the responsible use of natural resources. As the UN member countries begin to implement the new Sustainable Development Goals (SDGs), they should keep land rights in their focus, and measure and protect land rights in order to achieve the SDGs
- …