5 research outputs found

    ATLANTIC BIRDS: a data set of bird species from the Brazilian Atlantic Forest

    Get PDF
    South America holds 30% of the world's avifauna, with the Atlantic Forest representing one of the richest regions of the Neotropics. Here we have compiled a data set on Brazilian Atlantic Forest bird occurrence (150,423) and abundance samples (N = 832 bird species; 33,119 bird individuals) using multiple methods, including qualitative surveys, mist nets, point counts, and line transects). We used four main sources of data: museum collections, on‐line databases, literature sources, and unpublished reports. The data set comprises 4,122 localities and data from 1815 to 2017. Most studies were conducted in the Florestas de Interior (1,510 localities) and Serra do Mar (1,280 localities) biogeographic sub‐regions. Considering the three main quantitative methods (mist net, point count, and line transect), we compiled abundance data for 745 species in 576 communities. In the data set, the most frequent species were Basileuterus culicivorus, Cyclaris gujanensis, and Conophaga lineata. There were 71 singletons, such as Lipaugus conditus and Calyptura cristata. We suggest that this small number of records reinforces the critical situation of these taxa in the Atlantic Forest. The information provided in this data set can be used for macroecological studies and to foster conservation strategies in this biodiversity hotspot. No copyright restrictions are associated with the data set. Please cite this Data Paper if data are used in publications and teaching events

    Contrasting effects of engineered carbon nanotubes on plants: a review

    No full text
    Rapid surge of interest for carbon nanotube (CNT) in the last decade has made it an imperative member of nanomaterial family. Because of the distinctive physicochemical properties, CNTs are widely used in a number of scientific applications including plant sciences. This review mainly describes the role of CNT in plant sciences. Contradictory effects of CNT on plants physiology are reported. CNT can act as plant growth inducer causing enhanced plant dry biomass and root/shoot lengths. At the same time, CNT can cause negative effects on plants by forming reactive oxygen species in plant tissues, consequently leading to cell death. Enhanced seed germination with CNT is related to the water uptake process. CNT can be positioned as micro-tubes inside the plant body to enhance the water uptake efficiency. Due to its ability to act as a slow-release fertilizer and plant growth promoter, CNT is transpiring as a novel nano-carbon fertilizer in the field of agricultural sciences. On the other hand, accumulation of CNT in soil can cause deleterious effects on soil microbial diversity, composition and population. It can further modify the balance between plant-toxic metals in soil, thereby enhancing the translocation of heavy metal(loids) into the plant system. The research gaps that need careful attention have been identified in this review
    corecore