647 research outputs found

    Gravitational Waves Astronomy: a cornerstone for gravitational theories

    Full text link
    Realizing a gravitational wave (GW) astronomy in next years is a great challenge for the scientific community. By giving a significant amount of new information, GWs will be a cornerstone for a better understanding of gravitational physics. In this paper we re-discuss that the GW astronomy will permit to solve a captivating issue of gravitation. In fact, it will be the definitive test for Einstein's general relativity (GR), or, alternatively, a strong endorsement for extended theories of gravity (ETG).Comment: To appear in Proceedings of the Workshop "Cosmology, the Quantum Vacuum and Zeta Functions" for the celebration of Emilio Elizalde's sixtieth birthday, Barcelona, March 8-10, 201

    Abelian Magnetic Monopoles and Topologically Massive Vector Bosons in Scalar-Tensor Gravity with Torsion Potential

    Full text link
    A Lagrangian formulation describing the electromagnetic interaction - mediated by topologically massive vector bosons - between charged, spin-(1/2) fermions with an abelian magnetic monopole in a curved spacetime with non-minimal coupling and torsion potential is presented. The covariant field equations are obtained. The issue of coexistence of massive photons and magnetic monopoles is addressed in the present framework. It is found that despite the topological nature of photon mass generation in curved spacetime with isotropic dilaton field, the classical field theory describing the nonrelativistic electromagnetic interaction between a point-like electric charge and magnetic monopole is inconsistent.Comment: 18 pages, no figure

    Use of 2-dimensional speckle-tracking echocardiography to assess left ventricular systolic function in dogs with systemic inflammatory response syndrome

    Get PDF
    Background: Early identification of systolic dysfunction in dogs with systemic inflammatory response syndrome (SIRS) potentially could improve the outcome and decrease mortality. Objective: To compare 2-dimensional speckle tracking (2D-STE) with 2-dimensional (2D) and M-mode echocardiography in the evaluation of systolic function in SIRS dogs. Animals: Seventeen SIRS and 17 healthy dogs. Methods: Prospective observational case-control study. Each dog underwent physical examination, conventional echocardiography, 2D-STE, and C-reactive protein measurement. Results: Dogs with SIRS had lower 2D-STE ejection fraction (X4D-EF; 44 ± 8 versus 53 ± 8; P =.003), endocardial global longitudinal strain (ENDO-G-Long-St; -14.6 ± 3.2 versus -18.5 ± 4.1; P =.003), and normalized left ventricular diameter in diastole (1.38 ± 0.25 versus 1.54 ± 0.17; P =.04) and systole (0.85 ± 0.18 versus 0.97 ± 0.11; P =.03) as compared to healthy dogs. Simpson method of disks (SMOD) right parasternal EF (55 ± 9 versus 60 ± 6; P =.07) and end systolic volume index (ESVI; 23 ± 10 versus 21 ± 6; P =.61), SMOD left apical EF (59 ± 9 versus 59 ± 6; P =.87) and ESVI (20 ± 8 versus 22 ± 6; P =.25), fractional shortening (FS; 34 ± 5 versus 33 ± 4; P =.39), M-mode EF (64 ± 7 versus 62 ± 5; P =.35), and ESVI (23 ± 11 versus 30 ± 9; P =.06) were not significantly different between SIRS and control group, respectively. Conclusion and Clinical Importance: Speckle tracking X4D-EF and ENDO-G-Long-St are more sensitive than 2D and M-Mode FS, EF, and ESVI in detecting systolic impairment in dogs with SIRS

    Effective temperature for black holes

    Full text link
    The physical interpretation of black hole's quasinormal modes is fundamental for realizing unitary quantum gravity theory as black holes are considered theoretical laboratories for testing models of such an ultimate theory and their quasinormal modes are natural candidates for an interpretation in terms of quantum levels. The spectrum of black hole's quasinormal modes can be re-analysed by introducing a black hole's effective temperature which takes into account the fact that, as shown by Parikh and Wilczek, the radiation spectrum cannot be strictly thermal. This issue changes in a fundamental way the physical understanding of such a spectrum and enables a re-examination of various results in the literature which realizes important modifies on quantum physics of black holes. In particular, the formula of the horizon's area quantization and the number of quanta of area result modified becoming functions of the quantum "overtone" number n. Consequently, the famous formula of Bekenstein-Hawking entropy, its sub-leading corrections and the number of microstates are also modified. Black hole's entropy results a function of the quantum overtone number too. We emphasize that this is the first time that black hole's entropy is directly connected with a quantum number. Previous results in the literature are re-obtained in the limit n \to \infty.Comment: 10 pages,accepted for publication in Journal of High Energy Physics. Comments are welcom

    Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics

    Full text link
    We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal "renormalization group"-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics...Comment: 51 single column pages, 19 postscript figures, 2 tables, GRG tex style; minor corrections added; final version appearing in General Relativity and Gravitatio

    Reconstruction of the equation of state for the cyclic universes in homogeneous and isotropic cosmology

    Full text link
    We study the cosmological evolutions of the equation of state (EoS) for the universe in the homogeneous and isotropic Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) space-time. In particular, we reconstruct the cyclic universes by using the Weierstrass and Jacobian elliptic functions. It is explicitly illustrated that in several models the universe always stays in the non-phantom (quintessence) phase, whereas there also exist models in which the crossing of the phantom divide can be realized in the reconstructed cyclic universes.Comment: 29 pages, 8 figures, version accepted for publication in Central European Journal of Physic

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde
    • 

    corecore