125 research outputs found

    Phase-Sensitive Optical Pre-Amplifier Implemented in an 80km DQPSK Link

    Get PDF
    We present the first demonstration of a phase-sensitive fiber optic parametric amplifier successfully implemented over an 80 km dispersion managed link. We measure 1.3 dB higher sensitivity with this amplifier system against a comparable conventional EDFA-based link

    Optical injection-locking-based pump recovery for phase-sensitively amplified links

    Get PDF
    An injection-locking-based pump recovery system for phase-sensitively amplified links is proposed and studied experimentally. Measurements with 10 Gbaud DQPSK signals show penalty-free recovery of 0.8 GHz FWHM bandwidth pump with 63 dB overall amplification

    Filtered Carrier Phase Estimator for High-Order QAM Optical Systems

    Get PDF

    Chip-based Brillouin processing for carrier recovery in coherent optical communications

    Get PDF
    Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signals, eliminating the need for a separate LO. In contrast to SBS processing on-fiber, our solution provides phase and polarization stability while the narrow SBS linewidth allows for a record-breaking small guardband of ~265 MHz, resulting in higher spectral-efficiency than benchmark self-coherent schemes. This approach reveals comparable performance to state-of-the-art coherent optical receivers without requiring advanced DSP. Our demonstration develops a low-noise and frequency-preserving filter that synchronously regenerates a low-power narrowband optical tone that could relax the requirements on very-high-order modulation signaling and be useful in long-baseline interferometry for precision optical timing or reconstructing a reference tone for quantum-state measurements.Comment: Part of this work has been presented as a postdealine paper at CLEO Pacific-Rim'2017 and OSA Optic

    Phase-encoded RF signal generation based on an integrated 49GHz micro-comb optical source

    Full text link
    We demonstrate photonic RF phase encoding based on an integrated micro-comb source. By assembling single-cycle Gaussian pulse replicas using a transversal filtering structure, phase encoded waveforms can be generated by programming the weights of the wavelength channels. This approach eliminates the need for RF signal generators for RF carrier generation or arbitrary waveform generators for phase encoded signal generation. A large number of wavelengths of up to 60 were provided by the microcomb source, yielding a high pulse compression ratio of 30. Reconfigurable phase encoding rates ranging from 2 to 6 Gb/s were achieved by adjusting the length of each phase code. This work demonstrates the significant potentials of this microcomb-based approach to achieve high-speed RF photonic phase encoding with low cost and footprint.Comment: 11 pages, 8 figures, 46 references. Paper has been revised to update the references. No other changes have been mad
    corecore