111 research outputs found

    Is distortion of the bioprosthesis ring a risk factor for early calcification ?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the population ages, bioprosthesis are increasingly being used in cardiac valve replacement. Pericardial bioprosthesis combine an excellent hemodynamic performance with low thrombogenicity, but valve failure associated with calcification remains a concern with these valves. We describe distortion of the bioprosthesis ring as a risk factor for early calcification.</p> <p>Methods</p> <p>A total of 510 patients over the age of 70 years underwent isolated aortic valve replacement with the Mitroflow (A12) pericardial bioprosthesis. Thirty two patients (6,2%) have undergone a second aortic valve replacement due to structural valve dysfunction resulting from valve calcification. In all patients a chest radiography and coronary angiography was performed before reoperation. A 64 Multidetector Computed Tomography (MDCT) with retrospective ECG gating study was performed in four patients to evaluate the aortic bioprosthesis.</p> <p>Results</p> <p>Chest radiography showed in all patients an irregular bioprosthesis ring. At preoperative coronary angiography a distorted bioprosthesis ring was detected in all patients. Macroscopic findings of the explanted bioprostheses included extensive calcification in all specimens.</p> <p>Conclusion</p> <p>There was a possible relationship between early bioprosthetic calcification and radiologic distortion of the bioprosthesis ring.</p

    Divergent Biochemical Fractionation, Not Convergent Temperature, Explains Cellulose Oxygen Isotope Enrichment across Latitudes

    Get PDF
    Recent findings based on the oxygen isotope ratios of tree trunk cellulose indicate that the temperature of biomass production in biomes ranging from boreal to subtropical forests converge to an average leaf temperature of 21.4°C. The above conclusion has been drawn under the assumption that biochemically related isotopic fractionations during cellulose synthesis are not affected by temperature. Here we test the above assumption by heterotrophically generating cellulose at different temperatures and measuring the proportion of carbohydrate oxygen that exchange with water during cellulose synthesis and the average biochemical fractionation associated with this exchange. We observed no variation in the proportion of oxygen that exchange with different temperatures, which averaged 0.42 as it has been observed in other studies. On the other hand, the biochemical oxygen isotope fractionation during cellulose synthesis is affected by temperature and can be described by a 2nd order polynomial equation. The biochemical fractionation changes little between temperatures of 20 and 30°C averaging 26‰ but increases at lower temperatures to values of 31‰. This temperature sensitive biochemical fractionation explains the pattern of cellulose oxygen isotope ratios of aquatic plants encompassing several latitudes. The observed temperature sensitive biochemical fractionation also indicates that divergent biochemical fractionation and not convergent leaf temperature explains the increase in oxygen isotope enrichment of cellulose across several biomes

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    DNA alteration and programmed cell death during ageing of sunflower seed

    Get PDF
    Sunflower (Helianthus annuus L.) seed viability is affected by moisture content (MC) during ageing and is related to accumulation of hydrogen peroxide and changes in energy metabolism. The aim of the present work was to investigate the effect of ageing on DNA alteration events by RAPD (random amplification of polymorphic DNA) analysis and to determine whether loss of seed viability might correspond to a controlled programmed cell death (PCD). Ageing of sunflower seeds was carried out at 35 °C for 7 d at different MCs. The higher the MC, the lower was the seed viability. RAPD analysis showed that DNA alterations occurred during ageing especially in seeds containing a high MC. In addition, PCD, as revealed by DNA fragmentation and TUNEL (terminal deoxynucleotide transferase-mediated dUTP nick-end labelling) assay, was detected in aged seeds at MCs which resulted in ∌50% seed viability. At the cellular level, TUNEL assay and propidium iodide staining showed that cell death concerns all the cells of the embryonic axis. The quantification of the adenylate pool highlights mitochondrial dysfunction in aged seeds containing a high MC. The involvement of oxidative burst, mitochondria dysfunction, and PCD in seed loss of viability is proposed

    Early Neurodegeneration Progresses Independently of Microglial Activation by Heparan Sulfate in the Brain of Mucopolysaccharidosis IIIB Mice

    Get PDF
    BACKGROUND: In mucopolysaccharidosis type IIIB, a lysosomal storage disease causing early onset mental retardation in children, the production of abnormal oligosaccharidic fragments of heparan sulfate is associated with severe neuropathology and chronic brain inflammation. We addressed causative links between the biochemical, pathological and inflammatory disorders in a mouse model of this disease. METHODOLOGY/PRINCIPAL FINDINGS: In cell culture, heparan sulfate oligosaccharides activated microglial cells by signaling through the Toll-like receptor 4 and the adaptor protein MyD88. CD11b positive microglial cells and three-fold increased expression of mRNAs coding for the chemokine MIP1alpha were observed at 10 days in the brain cortex of MPSIIIB mice, but not in MPSIIIB mice deleted for the expression of Toll-like receptor 4 or the adaptor protein MyD88, indicating early priming of microglial cells by heparan sulfate oligosaccharides in the MPSIIIB mouse brain. Whereas the onset of brain inflammation was delayed for several months in doubly mutant versus MPSIIIB mice, the onset of disease markers expression was unchanged, indicating similar progression of the neurodegenerative process in the absence of microglial cell priming by heparan sulfate oligosaccharides. In contrast to younger mice, inflammation in aged MPSIIIB mice was not affected by TLR4/MyD88 deficiency. CONCLUSIONS/SIGNIFICANCE: These results indicate priming of microglia by HS oligosaccharides through the TLR4/MyD88 pathway. Although intrinsic to the disease, this phenomenon is not a major determinant of the neurodegenerative process. Inflammation may still contribute to neurodegeneration in late stages of the disease, albeit independent of TLR4/MyD88. The results support the view that neurodegeneration is primarily cell autonomous in this pediatric disease

    Metabolic control of embryonic dormancy in apple seed: seven decades of research

    Full text link

    Echinochloa crus-galli seed physiological dormancy and germination responses to hypoxic floodwaters

    No full text
    Hypoxic floodwaters can seriously damage seedlings. Seed dormancy could be an effective trait to avoid lethal underwater germination. This research aimed to discover novel adaptive dormancy responses to hypoxic floodwaters in seeds of Echinochloa crus-galli, a noxious weed from rice fields and lowland croplands. Echinochloa crus-galli dormant seeds were subjected to a series of sequential treatments. Seeds were: (i) submerged under hypoxic floodwater (simulated with hypoxic flasks) at different temperatures for 15 or 30 days, and germination tested under drained conditions while exposing seeds to dormancy-breaking signals (alternating temperatures, nitrate (KNO3), light); or (ii) exposed to dormancy-breaking signals during hypoxic submergence, and germination monitored during incubation and after transfer to drained conditions. Echinochloa crus-galli seed primary dormancy was attenuated under hypoxic submergence but to a lesser extent than under drained conditions. Hypoxic floodwater did not reinforced dormancy but hindered secondary dormancy induction in warm temperatures. Seeds did not germinate under hypoxic submergence even when subjected to dormancy-breaking signals; however, these signals broke dormancy in seeds submerged under normoxic water. Seeds submerged in hypoxic water could sense light through phytochrome signals and germinated when normoxic conditions were regained. Hypoxic floodwaters interfere with E. crus-galli seed seasonal dormancy changes. Dormancy-breaking signals are overridden during hypoxic floods, drastically decreasing underwater germination. In addition, results indicate that a fraction of E. crus-galli seeds perceive dormancy-breaking signals under hypoxic water and germinate immediately after aerobic conditions are regained, a hazardous yet less competitive environment for establishment.Fil: Peralta Ogorek, Lucas León. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos; ArgentinaFil: Striker, Gustavo Gabriel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. University of Western Australia; AustraliaFil: Mollard, Federico Pedro Otto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos; Argentin

    Simulation of coronary fluxes in case of three vessel disease.

    No full text
    International audienc
    • 

    corecore