16 research outputs found

    The effect of diatomaceous earth in live, attenuated infectious bronchitis vaccine, immune responses, and protection against challenge.

    Get PDF
    Live virus vaccines are commonly used in poultry production, particularly in broilers. Massive application and generation of a protective local mucosal and humoral immunity with no adverse effects is the main goal for this strategy. Live virus vaccines can be improved by adding adjuvants to boost mucosal innate and adaptive responses. In a previous study we showed that diatomaceous earth (DE) can be used as adjuvant in inactivated vaccines. The aim of this study was to test DE as adjuvant in an Ark-DPI live infectious bronchitis virus (IBV) vaccine after ocular or spray application. Titrating the virus alone or after addition of DE showed that DE had no detrimental effect on the vaccine virus. However, adding DE to the vaccine did not induce higher IgG titers in the serum and IgA titers in tears. It also did not affect the frequency of CD4+ T cells, CD8+ T cells and monocytes/macrophages in the blood and the spleen determined by flow cytometry. In addition, protection generated against IBV homologous challenges, measured by viral load in tears, respiratory signs and histopathology in tracheas, did not vary when DE was present in the vaccine formulation. Finally, we confirmed through our observations that Ark vaccines administered by hatchery spray cabinet elicit weaker immune responses and protection against an IBV homologous challenge compared to the same vaccine delivered via ocular route

    Vaccines against sexually transmitted diseases

    Get PDF
    Human sexually transmitted infections are prevalent throughout the world. Several have been associated with adverse pregnancy outcome and increased susceptibility to HIV infection, in addition to the discomfort of inflammation of the genital tract. Yet vaccines to protect against the infection at the genital mucosa are not available. Hepatitis B is an exception, but this virus becomes systemic and protection may be at the systemic level. Sexually transmitted diseases (STDs) have long been associated with reproductive failure in cattle. These infections cause considerable economic loss, which has been a stimulus to investigation. Consequently, vaccines and mechanisms of immune protection have been studied quite thoroughly. The results obtained with two commercially available vaccines will be used to illustrate principles of protective immunity against STDs. Both Campylobacter fetus subsp. venerealis and Tritrichomonas foetus are only transmitted sexually and both cause reproductive failure in cattle

    Effect of vinyl sulfone inhibitors of cysteine proteinases on Tritrichomonas foetus infection.

    No full text
    Tritrichomonas foetus is a sexually transmitted protozoon that causes genital inflammation and adverse pregnancy outcomes in cattle. Cysteine proteinases (CPs) released by T. foetus degrade immunoglobulin G (IgG) antibodies, complement component 3 and matrix proteins as well as inducing apoptosis of bovine genital epithelial cells. In this study, the efficacies of the vinyl sulfone CP inhibitors K11777 and WRR-483 were tested against CPs of T. foetus. The activity of secreted T. foetus CPs in culture supernatants was decreased in the presence of vinyl sulfone inhibitors. Inhibitor K11777 reduced the in vitro cytopathogenic effects of T. foetus in bovine foetal trophoblast cells, which are relevant target cells since this pathogen interferes with pregnancy. Pre-treatment of T. foetus prior to intravaginal inoculation diminished genital infection in a murine model. Therefore, vinyl sulfone CP inhibitors reduce several effects of T. foetus-secreted CPs, including cytotoxicity on relevant target host cells and genital infection in a murine model. These inhibitors have potential as chemotherapeutic agents against bovine trichomoniasis. Generalisation to human trichomoniasis requires further study

    Vaccines against sexually transmitted diseases

    No full text
    corecore