479 research outputs found

    Rapid near-optimal aerospace plane trajectory generation and guidance

    Get PDF
    Effort was directed toward the problems of the real time trajectory optimization and guidance law development for the National Aerospace Plane (NASP) applications. In particular, singular perturbation methods were used to develop guidance algorithms suitable for onboard, real time implementation. The progress made in this research effort is reported

    Trajectory optimization and guidance law development for national aerospace plane applications

    Get PDF
    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case

    Rapid near-optimal trajectory generation and guidance law development for single-stage-to-orbit airbreathing vehicles

    Get PDF
    General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit

    Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    Get PDF
    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed

    Weight History Association with Current Cardiorespiratory and Muscular Fitness

    Get PDF
    High cardiorespiratory and muscular fitness are often associated with lower body fat mass. Age-associated increases in body mass might be attenuated by maintaining a higher level of fitness into middle-age. PURPOSE: This study aimed to compare the cardiorespiratory and muscular fitness of individuals who have maintained body mass during adulthood to those who have had substantial increases and/or decreases in body mass in adulthood. METHODS: Obese, overweight, and non-obese adults were recruited to participate. Long-term health and weight history was collected retrospectively on 79 individuals. Total body composition, maximal oxygen consumption, grip strength, and maximal isometric knee extension strength were measured. Participants were subsequently categorized based on short term and long-term weight loss history, cardiorespiratory fitness, and muscle function for further analysis. RESULTS: Participants (31 Male, 45 female, aged 41.0 ± 12.3 years) were 29.2 ± 10.1% body fat having gained 9.3 ± 11.7 kg since 20 years of age. Current cardiorespiratory fitness as indicated by relative maximal oxygen consumption was 36.6 ± 12.0 ml*kg-1*min-1. No significant relationship existed between weight gain since age 20 and current cardiorespiratory fitness (r = -0.12). No differences in weight history were observed after classification of participants into high vs. low cardiorespiratory fitness nor high vs. low muscular fitness. CONCLUSIONS: Current cardiorespiratory and muscular fitness are independent of past body weight history. Despite the limitations of retrospective analysis of weight history and inability to determine previous levels of fitness, these results imply that high fitness might not be protective against age-associated body mass increases, but also that low fitness might not destine an individual to larger than normal gains in body mass

    An Evolutionary Method for the Minimum Toll Booth Problem: the Methodology

    Full text link
    This paper considers the minimum toll booth problem (MINTB) for determining a tolling strategy in a transportation network that requires the least number of toll locations, and simultaneously causes the most efficient use of the network. The paper develops a methodology for using the genetic algorithm to solve MINTB and presents the algorithm GAMINTB. The proposed method is tested and validated through a computational study with six example networks. Additional numerical test discovers some interesting properties for the proposed method, and provides guidelines for further application of the GAMINTB

    An Accelerated Development, Reduced Cost Approach to Lunar/Mars Exploration Using a Modular NTR-Based Space Transportation System

    Get PDF
    The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common' NTR-based moon/Mars STS, examines performance sensitivities resulting from different 'mission mode' assumptions, and quantifies potential schedule and cost benefits resulting from this modular moon/Mars NTR vehicle approach

    A Revolutionary Lunar Space Transportation System Architecture Using Extraterrestrial Lox-augmented NTR Propulsion

    Get PDF
    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on each piloted round trip mission. As the initial lunar outposts grow to centralized bases and settlements with a substantial permanent human presence, a LANTR-powered shuttle capable of 36 to 24 hour 'one-way' trip times to the moon and back becomes possible with initial mass in low earth orbit (IMLEO) requirements of approximately 160 to 240 metric tons, respectively
    corecore