17 research outputs found

    An indirect limit on the amplitude of primordial Gravitational Wave Background from CMB-Galaxy Cross Correlation

    Full text link
    While large scale cosmic microwave background (CMB) anisotropies involve a combination of the scalar and tensor fluctuations, the scalar amplitude can be independently determined through the CMB-galaxy cross-correlation. Using recently measured cross-correlation amplitudes, arising from the cross-correlation between galaxies and the Integrated Sachs Wolfe effect in CMB anisotropies, we obtain a constraint r < 0.5 at 68% confidence level on the tensor-to-scalar fluctuation amplitude ratio. The data also allow us to exclude gravity waves at a level of a few percent, relative to the density field, in a low - Lambda dominated universe(Omega_Lambda~0.5). In future, joining cross-correlation ISW measurements, which captures cosmological parameter information, with independent determinations of the matter density and CMB anisotropy power spectrum, may constrain the tensor-to-scalar ratio to a level above 0.05. This value is the ultimate limit on tensor-to-scalar ratio from temperature anisotropy maps when all other cosmological parameters except for the tensor amplitude are known and the combination with CMB-galaxy correlation allows this limit to be reached easily by accounting for degeneracies in certain cosmological parameters.Comment: 5 Pages, 1 Figure, revised discussion on cosmic variance limits on the tensor-to-scalar ratio from CMB, matches PRD accepted versio

    Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation

    Full text link
    We report a method of solving for canonical scalar field exact solution in a non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger (NLS)-type formulation in comparison to the method in the standard Friedmann framework. We consider phantom and non-phantom scalar field cases with exponential and power-law accelerating expansion. Analysis on effective equation of state to both cases of expansion is also performed. We speculate and comment on some advantage and disadvantage of using the NLS formulation in solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and Gra

    Probing Dark Energy with Supernovae : Bias from the time evolution of the equation of state

    Full text link
    Observation of thousands of type Ia supernovae should offer the most direct approach to probe the dark energy content of the universe. This will be undertaken by future large ground-based surveys followed by a space mission (SNAP/JDEM). We address the problem of extracting the cosmological parameters from the future data in a model independent approach, with minimal assumptions on the prior knowledge of some parameters. We concentrate on the comparison between a fiducial model and the fitting function and adress in particular the effect of neglecting (or not) the time evolution of the equation of state. We present a quantitative analysis of the bias which can be introduced by the fitting procedure. Such bias cannot be ignored as soon as the statistical errors from present data are drastically improved.Comment: 22 pages, 10 figures, submitted to Phys. Rev.

    Comparison of Standard Ruler and Standard Candle constraints on Dark Energy Models

    Full text link
    We compare the dark energy model constraints obtained by using recent standard ruler data (Baryon Acoustic Oscillations (BAO) at z=0.2 and z=0.35 and Cosmic Microwave Background (CMB) shift parameters R and l_a) with the corresponding constraints obtained by using recent Type Ia Supernovae (SnIa) standard candle data (ESSENCE+SNLS+HST from Davis et. al.). We find that, even though both classes of data are consistent with LCDM at the 2\sigma level, there is a systematic difference between the two classes of data. In particular, we find that for practically all values of the parameters (\Omega_0m,\Omega_b) in the 2\sigma range of the the 3-year WMAP data (WMAP3) best fit, LCDM is significantly more consistent with the SnIa data than with the CMB+BAO data. For example for (\Omega_0m,\Omega_b)=(0.24,0.042) corresponding to the best fit values of WMAP3, the dark energy equation of state parametrization w(z)=w_0 + w_1 (z/(1+z)) best fit is at a 0.5\sigma distance from LCDM (w_0=-1,w_1=0) using the SnIa data and 1.7\sigma away from LCDM using the CMB+BAO data. There is a similar trend in the earlier data (SNLS vs CMB+BAO at z=0.35). This trend is such that the standard ruler CMB+BAO data show a mild preference for crossing of the phantom divide line w=-1, while the recent SnIa data favor LCDM. Despite of this mild difference in trends, we find no statistically significant evidence for violation of the cosmic distance duality relation \eta \equiv d_L(z)/(d_A(z) (1+z)^2)=1. For example, using a prior of \Omega_0m=0.24, we find \eta=0.95 \pm 0.025 in the redshift range 0<z<2, which is consistent with distance duality at the 2\sigma level.Comment: References added. 9 pages, 7 figures. The Mathematica files with the numerical analysis of the paper can be found at http://leandros.physics.uoi.gr/rulcand/rulcand.ht

    Dark matter and structure formation a review

    Full text link
    This paper provides a review of the variants of dark matter which are thought to be fundamental components of the universe and their role in origin and evolution of structures and some new original results concerning improvements to the spherical collapse model. In particular, I show how the spherical collapse model is modified when we take into account dynamical friction and tidal torques

    Fitting Type Ia supernovae with coupled dark energy

    Full text link
    We discuss the possible consistency of the recently discovered Type Ia supernovae at z>1 with models in which dark energy is strongly coupled to a significant fraction of dark matter, and in which an (asymptotic) accelerated phase exists where dark matter and dark energy scale in the same way. Such a coupling has been suggested for a possible solution of the coincidence problem, and is also motivated by string cosmology models of "late time" dilaton interactions. Our analysis shows that, for coupled dark energy models, the recent data are still consistent with acceleration starting as early as at z=3z=3 (to within 90% c.l.), although at the price of a large "non-universality" of the dark energy coupling to different matter fields. Also, as opposed to uncoupled models which seem to prefer a ``phantom'' dark energy, we find that a large amount of coupled dark matter is compatible with present data only if the dark energy field has a conventional equation of state w>-1.Comment: 13 pages, 6 figures. Final version, accepted for publication in JCA

    Two Loop Scalar Self-Mass during Inflation

    Full text link
    We work in the locally de Sitter background of an inflating universe and consider a massless, minimally coupled scalar with a quartic self-interaction. We use dimensional regularization to compute the fully renormalized scalar self-mass-squared at one and two loop order for a state which is released in Bunch-Davies vacuum at t=0. Although the field strength and coupling constant renormalizations are identical to those of lfat space, the geometry induces a non-zero mass renormalization. The finite part also shows a sort of growing mass that competes with the classical force in eventually turning off this system's super-acceleration.Comment: 31 pages, 5 figures, revtex4, revised for publication with extended list of reference

    Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha

    Full text link
    We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around 10510^{-5} in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a changing fine structure constant with the tight constraints emerging from the Oklo natural nuclear reactor.Comment: 13 pages, 10 figures, RevTex, new references adde

    Cosmological constraints on the dark energy equation of state and its evolution

    Full text link
    We have calculated constraints on the evolution of the equation of state of the dark energy, w(z), from a joint analysis of data from the cosmic microwave background, large scale structure and type-Ia supernovae. In order to probe the time-evolution of w we propose a new, simple parametrization of w, which has the advantage of being transparent and simple to extend to more parameters as better data becomes available. Furthermore it is well behaved in all asymptotic limits. Based on this parametrization we find that w(z=0)=-1.43^{+0.16}_{-0.38} and dw/dz(z=0) = 1.0^{+1.0}_{-0.8}. For a constant w we find that -1.34 < w < -0.79 at 95% C.L. Thus, allowing for a time-varying w shifts the best fit present day value of w down. However, even though models with time variation in w yield a lower chi^2 than pure LambdaCDM models, they do not have a better goodness-of-fit. Rank correlation tests on SNI-a data also do not show any need for a time-varying w.Comment: 19 pages, 11 figures, JCAP format, typos corrected, references update

    Dark energy cosmology with generalized linear equation of state

    Full text link
    Dark energy with the usually used equation of state p=wρp=w\rho, where w=const<0w=const<0 is hydrodynamically unstable. To overcome this drawback we consider the cosmology of a perfect fluid with a linear equation of state of a more general form p=α(ρρ0)p=\alpha(\rho-\rho_0), where the constants α\alpha and ρ0\rho_0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α>0\alpha>0) and unstable (α<0\alpha<0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by the using of phase trajectories analysis. For the dark energy case there are possible some distinctive types of cosmological scenarios: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the Big Rip and with the anti-Big Rip. In the framework of a linear equation of state the universe filled with an phantom energy, w<1w<-1, may have either the de Sitter attractor or the Big Rip.Comment: 12 pages, 11 figures, typos corrected, references adde
    corecore