126 research outputs found

    Papillary microcarcinomas of the thyroid gland and immunohistochemical analysis of expression of p53 protein in papillary microcarcinomas

    Get PDF
    BACKGROUND: Thyroid papillary microcarcinoma (TPM) is defined according to WHO criteria as a thyroid tumor smaller than 1–1.5 cm. TPMs are encountered in 0.5–35.6 % of autopsies or surgical specimens where carcinoma had been unsuspected. The purpose of the present study was to evaluate patients who had TPMs in terms of clinical findings, histopathological features and immunohistochemical evidence of expression of the tumor suppressor gene p53. METHODS: A total of 44 patients with TPMs less than 1.0 cm in diameter were included in the study. The patients were evaluated clinically and the tumors were evaluated in terms of their histopathological and immunohistochemical features, including expression of p53. RESULTS: The female/male ratio was 2.8/1, and the median age at time of diagnosis was 49 years (range 20–71 years). The maximum diameter of the smallest focus was 0.1 mm, and that of the largest was 10 mm microscopically. The mean diameter of all tumors was 5.7 mm. There was no correlation between tumor size and age or gender. Of the TPMs, 72 % were found in the right lobe, 24 % in the left lobe and 4 % in the isthmus. Fine-needle aspiration biopsy provided the diagnosis of TPM in only 43.2 % of the patients. All patients were treated with surgery, with 20 undergoing conservative surgery, i.e. lobectomy or isthmusectomy, and 24 undergoing total thyroidectomy. Frozen section provided the diagnosis of TPM in only 56.8 % of the patients. We found lymphocytic thyroiditis in 13.6% of patients, follicular variants in 11.9%, capsular invasion in 26.8%, lymph node involvement in 11.9%, soft tissue metastases in the neck in 12.1% and multifocality in 31.7 %, and none of these were related to age or gender (p > 0.05). No distant metastases were observed during approximately 10 years of follow up. We found p53 positivity in 34.5 % of TPM tumors. However, p53 expression was not statistically related to age or gender. CONCLUSION: Our findings imply that TPMs may not be entirely innocent since they are associated with signs of poor prognosis such as capsular invasion, multifocal presentation, lymph node involvement and p53 positivity. Therefore, TPMs should be evaluated and followed like classical papillary cancers

    Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions.

    Get PDF
    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism <i>Tetrahymena pyriformis</i> to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo­[a]­pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of <i>T. pyriformis</i>, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs

    Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures

    Full text link

    The role of biofilms in subsurface transport processes

    Get PDF
    Landfill and radioactive waste disposal risk assessments focus on contaminant transport and are principally concerned with understanding the movement of gas, water and solutes through engineered barriers and natural groundwater systems. However, microbiological activity can affect transport processes, changing the chemical and physical characteristics of the subsurface environment. Such effects are generally caused by biofilms attached to rock surfaces. Currently most existing transport models have to introduce additional assumptions about the relationships between the microbial growth and changes to the porosity and permeability. These relationships are particularly poorly understood. This paper reviews recent experimental work directed at the development of biofilms and their influence on subsurface flow and the transport of contaminants in intergranular and fracture porosity flow systems. The results are then discussed in terms of a more complex conceptual model

    Delineating the Specific Influence of Virus Isoelectric Point and Size on Virus Adsorption and Transport through Sandy Soils

    Get PDF
    Many of the factors controlling viral transport and survival within the subsurface are still poorly understood. In order to identify the precise influence of viral isoelectric point on viral adsorption onto aquifer sediment material, we employed five different spherical bacteriophages (MS2, PRD1, Qβ, φX174, and PM2) having differing isoelectric points (pI 3.9, 4.2, 5.3, 6.6, and 7.3 respectively) in laboratory viral transport studies. We employed conventional batch flowthrough columns, as well as a novel continuously recirculating column, in these studies. In a 0.78-m batch flowthrough column, the smaller phages (MS2, φX174, and Qβ), which had similar diameters, exhibited maximum effluent concentration/initial concentration values that correlated exactly with their isoelectric points. In the continuously recirculating column, viral adsorption was negatively correlated with the isoelectric points of the viruses. A model of virus migration in the soil columns was created by using a one-dimensional transport model in which kinetic sorption was used. The data suggest that the isoelectric point of a virus is the predetermining factor controlling viral adsorption within aquifers. The data also suggest that when virus particles are more than 60 nm in diameter, viral dimensions become the overriding factor

    A prospective randomized single-blind, multicenter trial comparing the efficacy and safety of paroxetine with and without quetiapine therapy in depression associated with anxiety

    No full text
    OBJECTIVE: To evaluate quetiapine as an adjunct to paroxetine in patients with comorbid depression and anxiety
    corecore