2 research outputs found

    A SMART decade: outcomes of an integrated, inclusive, first-year college-level STEM curricular innovation

    Get PDF
    In the early 2000s, our primarily undergraduate, white institution (PUI/PWI), began recruiting and enrolling higher numbers of students of color and first-generation college students. However, like many of our peer institutions, our established pedagogies and mindsets did not provide these students an educational experience to enable them to persist and thrive in STEM. Realizing the need to systematically address our lack of inclusivity in science majors, in 2012 faculty from multiple disciplines developed the Science, Math, and Research Training (SMART) program. Here, we describe an educational innovation, originally funded by a grant from the Howard Hughes Medical Institute, designed to support and retain students of color, first generation college students, and other students with marginalized identities in the sciences through a cohort-based, integrated, and inclusive first-year experience focused on community and sense of belonging. The SMART program engages first-year students with semester-long themed courses around “real world” problems of antibiotic resistance and viral infections while integrating the fields of Biology, Chemistry, Mathematics, and an optional Computer Science component. In the decade since its inception, 97% of SMART students have graduated or are on track to graduate, with 80.9% of these students earning a major in a STEM discipline. Here, we present additional student outcomes since the initiation of this program, results of the student self-evaluative surveys SALG and CURE, and lessons we have learned from a decade of this educational experience

    In Vivo Characterization of Carbon Dots-Bone Interactions: Toward the Development of Bone-Specific Nanocarriers for Drug Delivery.

    No full text
    Current treatments for osteoporosis and other bone degenerative diseases predominately rely on preventing further bone erosion rather than restoring bone mass, as the latter treatments can unintentionally trigger cancer development by undiscriminatingly promoting cell proliferation. One approach to circumvent this problem is through the development of novel chemical carriers to deliver drug agents specifically to bones. We have recently shown that carbon nanodots (C-dots) synthesized from carbon nanopowder can bind with high affinity and specificity to developing bones in the larval zebrafish. Larval bones, however, are physiologically different from adult bones in their growth, repair, and regeneration properties. Here we report that C-dots can bind to adult zebrafish bones and that this binding is highly specific to areas of appositional growth. C-dots deposition occurred within 30 minutes after delivery and was highly selective, with bones undergoing regeneration and repair showing higher levels of C-dots deposition than bones undergoing normal homeostatic turnover. Importantly, C-dots deposition did not interfere with bone regeneration or the animal’s health. Together, our results establish C-dots as a potential novel vehicle for the targeted delivery of drugs to treat adult bone disease
    corecore