54 research outputs found

    A linear moose model with pairs of degenerate gauge boson triplets

    Full text link
    The possibility of the existence of a strongly interacting electroweak symmetry breaking sector, as opposed to the weakly interacting light Higgs of the Standard Model, is not yet ruled out by experiments. In this paper we make an extensive study of a deconstructed model (or ``moose'' model) providing a possible effective description of such a strong symmetry breaking sector, and show its compatibility with experimental data for a wide portion of the model parameters space. The model is a direct generalization of the previously proposed D-BESS model.Comment: Latex file, 17 pages, 2 figures, published versio

    Indirect sensitivity to Zâ€Čs in high-energy e+e− collisions: standard vs. composite study

    Get PDF
    We compare the phenomenology of two models, the so-called “minimal Z'” and an effective model an SM-like Higgs is realised as a composite state of a new strong interaction, at a multi-TeV linear collider in the hypothesis that the new physics is at a scale beyond the direct reach of the machine

    reSolve — A transverse momentum resummation tool

    Get PDF
    In this note, we introduce the new tool reSolve, a Monte Carlo differential cross-section and parton-level event generator whose main purpose is to add transverse momentum resummation to a general class of inclusive processes at hadron colliders, namely all those which do not involve hadrons or jets in the measured final state. This documentation refers to the first main version release, which will form the basis for continued developments, consequently it only implements the key features of those we plan to ultimately include. This article acts as a manual for the program; describing in detail its use, structure, validation and results; whilst also highlighting key aspects of the resummation formalism applied. It details the two classes of processes so far included; these are diphoton production and Drell–Yan production. A main concept behind the development of the tool is that it is a hands-on white box for the user: significant effort has been made to give the program a modular structure, making the various parts which comprise it independent of each other as much as possible and ensuring they are transparently documented, customisable and, in principle, replaceable with something that may better serve the user's needs. reSolve is a new C++ program, based on an evolution of the private Fortran code 2gres, it is also influenced by the DYRes Fortran code. This initial version calculates the low transverse momentum contribution to the fully differential cross-section for two main categories of processes; the inclusive production of two photons, and inclusive Drell–Yan production. In all cases resummation up to Next-to-Next-to-Leading Logarithm (NNLL) is included. We aim to extend the program to several more processes in the near future. The program is publicly available on Github. Program summary: Program title: reSolve Program Files doi: http://dx.doi.org/10.17632/4djmkmy69c.1 Licensing provisions: GNU General Public License 3 Programming language: C++, fortran External routines: minuit and Cuba Nature of problem: Calculating the transverse momentum spectrum, including resummation, for a general process at hadron colliders. Solution method: Monte Carlo generation of the phase space points and phase space integration to allow the production of differential distributions, each phase space point itself has to be inverse Fourier transformed and double inverse Mellin transformed to allow the resummation, following the usual transverse momentum resummation impact parameter space formalism. reSolve performs up to Next-to-Next-to-Leading Logarithm resummation (NNLL). Restrictions: So far only diphoton production in the Standard Model (background, not including Higgs) and Drell–Yan production are included, nonetheless the program is designed to allow further extensions to additional processes, including by the user. The limitations on the processes possible to implement are that they must be hadron–hadron collisions producing a non-strongly interacting measured final state system. This first main implementation of reSolve calculates only the resummed part of the differential cross-section, which is dominant at low transverse momentum, this has to be matched with the usual finite contributions to obtain the spectrum over the whole transverse momentum range.This research has been partially supported by STFC consolidated grant ST/L000385/1 and by STFC consolidated grant ST/P000681/1, and also in part by the National Science Foundation under Grant No. NSF PHY-1748958 along with the Gordon and Betty Moore Foundation

    Transverse-momentum resummation for the signal-background interference in the H →γγ channel at the LHC

    Get PDF
    We present an upgraded calculation of the effects of resonance-continuum interference for the Higgs boson decaying to two photons at the Large Hadron Collider, at next-to-leading order in the strong coupling αS, O(αS3), and including transverse-momentum (qT) resummation at next-to-leading logarithmic accuracy. We study the importance of the interference contribution in different transverse-momentum regions, with a particular focus on the low-qT region qT2 Q2 (with Q2 being the invariant diphoton mass) where resummation becomes essential for a reliable calculation

    Interference effects in the H(→ γγ) + 2 jets channel at the LHC

    Get PDF
    We compute the interference between the resonant process pp → H(→ γγ) + 2 jets and the corresponding continuum background at leading order in QCD. For the Higgs signal, we include gluon fusion (GF) and vector boson fusion (VBF) production channels, while for the background we consider all tree-level contributions, including pure EW effects (O(α 4 QED)) and QCD contributions (O(α 2 QEDα 2 s )), plus the loopinduced gluon-initiated process. After convolution with the experimental mass resolution, the main effect of the interference is to shift the position of the mass peak, as in the inclusive GF case studied previously. The apparent mass shift is small in magnitude but strongly dependent on the Higgs width, potentially allowing for a measurement of, or bound on, the width itself. In the H(→ γγ) + 2 jets channel, the VBF and GF contributions generate shifts of opposite signs which largely cancel, depending on the sets of cuts used, to as little as 5 MeV (toward a lower Higgs mass). The small magnitude of the shift makes this channel a good reference mass for measuring the inclusive mass shift of around 60 MeV in the Standard Model.Fil: Coradeschi, F.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FĂ­sica; Argentina. UniversitĂ  degli Studi di Firenze; ItaliaFil: de Florian, Daniel Enrique. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Dixon, L. J.. University of Stanford; Estados Unidos. Walter Burke Institute for Theoretical Physics; Estados UnidosFil: Fidanza Romani, Nerina Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FĂ­sica; ArgentinaFil: Höche, S.. University of Stanford; Estados UnidosFil: Ita, H.. Albert Ludwigs UniversitĂ€t Freiburg; AlemaniaFil: Li, Y.. University of Stanford; Estados UnidosFil: Mazzitelli, Javier SebastiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FĂ­sica; Argentin

    Modified spontaneous symmetry breaking pattern by brane-bulk interaction terms

    Full text link
    We show how translational invariance can be broken by the vacuum that drives the spontaneous symmetry breaking of extra-dimensional extensions of the Standard Model, when delta-like interactions between brane and bulk scalar fields are present. We explicitly build some examples of vacuum configurations, which induce the spontaneous symmetry breaking, and have non trivial profile in the extra coordinate.Comment: 13 pages, two figure

    Enhancing Smart Environments with Mobile Robots

    Full text link

    Goldstones in Diphotons

    Full text link
    We study the conditions for a new scalar resonance to be observed first in diphotons at the LHC Run-2. We focus on scenarios where the scalar arises either from an internal or spacetime symmetry broken spontaneously, for which the mass is naturally below the cutoff and the low-energy interactions are fixed by the couplings to the broken currents, UV anomalies, and selection rules. We discuss the recent excess in diphoton resonance searches observed by ATLAS and CMS at 750 GeV, and explore its compatibility with other searches at Run-1 and its interpretation as Goldstone bosons in supersymmetry and composite Higgs models. We show that two candidates naturally emerge: a Goldstone boson from an internal symmetry with electromagnetic anomalies, and the scalar partner of the Goldstone of supersymmetry breaking: the sgoldstino. The dilaton from conformal symmetry breaking is instead disfavoured by present data, in its minimal natural realization.Comment: 18 pages + refs, 2 figures. v2: typos corrected, references added, discussions extended and three new plots. Conclusion unchanged. v3: published versio

    Petri Net Plans A framework for collaboration and coordination in multi-robot systems

    Get PDF
    Programming the behavior of multi-robot systems is a challenging task which has a key role in developing effective systems in many application domains. In this paper, we present Petri Net Plans (PNPs), a language based on Petri Nets (PNs), which allows for intuitive and effective robot and multi-robot behavior design. PNPs are very expressive and support a rich set of features that are critical to develop robotic applications, including sensing, interrupts and concurrency. As a central feature, PNPs allow for a formal analysis of plans based on standard PN tools. Moreover, PNPs are suitable for modeling multi-robot systems and the developed behaviors can be executed in a distributed setting, while preserving the properties of the modeled system. PNPs have been deployed in several robotic platforms in different application domains. In this paper, we report three case studies, which address complex single robot plans, coordination and collaboration
    • 

    corecore