
Auton Agent Multi-Agent Syst (2011) 23:344–383
DOI 10.1007/s10458-010-9146-1

Petri Net Plans
A framework for collaboration and coordination in multi-robot
systems

V. A. Ziparo · L. Iocchi · Pedro U. Lima · D. Nardi ·
P. F. Palamara

Published online: 31 July 2010
© The Author(s) 2010

Abstract Programming the behavior of multi-robot systems is a challenging task which
has a key role in developing effective systems in many application domains. In this paper,
we present Petri Net Plans (PNPs), a language based on Petri Nets (PNs), which allows
for intuitive and effective robot and multi-robot behavior design. PNPs are very expressive
and support a rich set of features that are critical to develop robotic applications, including
sensing, interrupts and concurrency. As a central feature, PNPs allow for a formal analysis
of plans based on standard PN tools. Moreover, PNPs are suitable for modeling multi-robot
systems and the developed behaviors can be executed in a distributed setting, while pre-
serving the properties of the modeled system. PNPs have been deployed in several robotic
platforms in different application domains. In this paper, we report three case studies, which
address complex single robot plans, coordination and collaboration.

Keywords Petri Nets · Multi-robot systems · Formal models · Plan representation
and execution

V. A. Ziparo (B) · L. Iocchi · D. Nardi · P. F. Palamara
Dipartimento di Informatica e Sistemistica “Antonio Ruberti” (DIS), Sapienza University of Rome,
Via Ariosto 25, 00185 Roma, Italy
e-mail: ziparo@dis.uniroma1.it

L. Iocchi
e-mail: iocchi@dis.uniroma1.it

D. Nardi
e-mail: nardi@dis.uniroma1.it

P. F. Palamara
e-mail: palamara@dis.uniroma1.it

P. U. Lima
Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), Lisbon, Portugal
e-mail: pal@isr.ist.utl.pt

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 345

1 Introduction

The design of complex behaviors in dynamic, partially observable and unpredictable envi-
ronments is a crucial task for the development of effective robotic applications. This is
particularly true when the task to accomplish requires coordination and collaboration among
multiple robots, which must act as a team: teamwork can indeed boost performance.

Typically, complex multi-agent (or robot) behaviors, or more specifically plans, can be
achieved through:

– Plan design: based on a representation formalism, an expert designs by hand the behaviors,
which allow for the accomplishment of a given task;

– Plan generation: based on a description of the goals and the capabilities of a system, a
planner generates a solution, whose execution achieves the task.

The former approach can be used to write very rich plans which are limited solely by the
expressiveness of the representational formalism used and by the capabilities of the designer.
Nevertheless, it can be very hard to deal with such plans when they become large and com-
plex in realistic applications. The latter approach is clearly more desirable, because it auto-
mates a task that requires considerable effort of specialized operators and is prone to errors.
Nevertheless, the complexity of tasks for multi-robot systems, and in general for the physical
world, limits the possibility of applying such approaches. Indeed, either they are not enough
expressive to represent all the features of interest or they are too complex to compute solutions
for realistic applications.

In this article, we present a representation and execution framework for high level multi-
robot plan design, called Petri Net Plans (PNPs) [58,59]. The goal of PNPs is to support
developers in designing and implementing complex high-level robot and multi-robot behav-
iors, by providing a rich modeling language that offers several key features (such as, modeling
concurrency, distributed execution, formal analysis, etc. …) that are very often required in
robotic systems, but that have not been previously integrated into state of the art frameworks.

The syntax and the semantics of PNPs is based on Petri Nets (PNs) [40] and, indeed,
PNPs are the first systematic and methodological approach for plan design based on PNs.
PNPs inherit from PNs many of their features, which are very useful in robotic applications.
An additional advantage of using PNs is that they have an appealing and intuitive graphical
representation, that is (sometimes exponentially) more compact than state of the art behav-
ior representation languages. Such graphical representation allows for both: at design time,
understanding static properties of the net and, at runtime, visually monitoring the evolution
of tokens in the net, and thus the actual robot behavior. The tools for task design, devel-
opment and debug, based on “Petri Net languages” have been extensively used in distinct
robotic applications by the many students involved in our projects. While a comprehensive
and formal evaluation of how users work with the framework is out of the scope of this
paper, our experience suggests that PNPs are more intuitive and easy to use as compared
with competing approaches.

Despite the usability and intuitiveness of PNPs, several types of errors may frequently
occur in plan design. Consequently, we identify some properties of plans that, when verified,
prevent the designer from incurring into these errors. We show that verifying such properties
can be reduced to standard PN analysis problems. These problems can then be solved using
standard PN analysis tools, thus enabling for debugging tools to support plan design. The
support on formal models is fundamental to ensure that plan formal specifications are satis-
fied, and represents a feature not often found in current robot task “models” and architectures.

123

346 Auton Agent Multi-Agent Syst (2011) 23:344–383

It is worth noticing that, when using other formalisms, plan verification is typically based on
empirical evaluation.

PNPs take inspiration from action languages (e.g., [45]), and, thus, are explicitly defined
as composition of actions. As any robotic system takes time to perform actions, we describe
actions as non-instantaneous. This has a relevant impact on the language and allows for
complex forms of execution control in terms of monitoring and failure recovery. Moreover,
given that the environment is partially observable to robots, we model sensing actions, as a
form of knowledge acquisition [10,47]. Another relevant feature of many robots is that they
can concurrently actuate several parts of their body. For example, a humanoid robot can use
simultaneously, for different purposes, its arms, legs and head. To this end, PNPs include
operators to handle concurrent actions.

Multi-robot systems require robots to coordinate their actions in order to perform com-
plex tasks, which are not achievable by a single robot, and to avoid interference. To this end,
we introduce coordination operators, which allow the designer to ensure synchronization
constraints among actions of different robots. In a PNP, one can specify a global model of
the multi-robot system, where actions of different robots can be synchronized using direct
communication. However, in order to avoid a central coordinator agent, which would intro-
duce a single point of failure and a bottleneck for communication in the system, we provide
a mechanism to automatically decompose a multi-robot PNP into a set of single-robot PNPs,
which can thus be executed in a distributed fashion. We show that the properties that hold
for the original centralized model, are still valid in the decomposed model of distributed
execution, if the robots have access to a reliable communication channel.

PNPs can also be used for the implementation of collaborative behaviors. In particular,
we show that in order to model collaborative behaviors, coordination is not enough. Thus,
we introduce a new operator, the joint committed action, which we use to model a general
theory of teamwork, namely the Joint Intentions theory. As for coordination, we show that
collaborative behaviors described through PNPs allow for distributed execution.

The proposed framework has been implemented and is available1 both as a C ++ library
and as an Open-RDK [2] module. PNPs have been tested on several robotic platforms
(i.e., wheeled robots, quadruped robots AIBO and humanoid robots NAO) and in different
domains (i.e., Search and Rescue [3], Soccer [33,59], Foraging [16] and Manufacturing [26]).
A PNP implementation for the soccer domain obtained the Best Robotic Demo Award at
AAMAS’08 [41]. In this article, we present three case studies which show many of the rele-
vant features of PNPs: a single robot task for search and rescue, complex coordination in a
collaborative foraging problem and advanced collaboration using the Joint Intentions theory
in a soccer domain. The case studies have been implemented on the AIBO robots and on a
Pioneer wheeled platform.

In summary, the contributions of the proposed approach are manifold:

1. a methodological approach to Plan Design through PNs that, as a central feature, allows
for automated plan verification;

2. a formal model for coordination and collaboration in multi-robot systems;
3. an open source implementation of a development environment.

The paper is organized as follows. After presenting some related work in the next section,
we define the basics of PNPs in Sect. 3. Then, in Sect. 4 we provide operational semantics
in terms of an execution algorithm for PNPs. In Sect. 5 we show some advanced features of
the language for coordination, which include operators for synchronizing actions of different

1 Available at pnp.dis.uniroma1.it.

123

pnp.dis.uniroma1.it

Auton Agent Multi-Agent Syst (2011) 23:344–383 347

robots and a distributed execution algorithm. Finally, in Sect. 6, we show how PNPs can
be used to achieve collaboration. We conclude by showing some of the multi-robot systems
we have implemented in Sect. 7 and by discussing the features of the proposed approach in
Sect. 8.

2 Related work

This section gives an overview of the main approaches that have been proposed in the past
few years for the representation and execution of robotic behaviors, in order to provide the
context in which PNPs have been developed. We identify three broad classes of approaches
to plan design and high-level programming for intelligent robots: FSA-based approaches,
BDI approaches and PN-based approaches. We conclude the section with a comparative
discussion of the these approaches with respect to PNPs.

It is worth noticing that there are a number of approaches that do not fall in the afore-
mentioned three categories. These approaches are mostly programming tools (frameworks)
for robotics, with no underlying formal model or with a limited underlying formal model,
that usually have ad-hoc semantics and do not support formal analysis, making it difficult
to develop robust and effective behaviors. The resulting tools often take the form of frame-
works for ordinary programming languages. For example, ESL [20] is a language based
on LISP that defines several constructs commonly used in robotics. In a similar way, the
Task Description Language (TDL) [49] extends C++ in order to include asynchronous con-
strained procedures, called Tasks. TDL programs have a hierarchical structure, called Task
Tree, where each child of a given task is an asynchronous process and execution constraints
among siblings are explicitly represented. The Reactive Action Packages (RAPs) [19] are
expressed in LISP-like syntax and describe concurrent tasks along with execution constrains.
RAPs are an ad-hoc tool for execution of concurrent tasks in robotic applications that have
some similarities with PNs. In ESL, TDL and RAP no analysis of the resulting behavior is
possible and coding coherent behaviors requires a considerable modeling effort.

2.1 FSA-based approaches

Many robot programming languages are based on Finite State Automata (FSA). FSA are
either used explicitly, possibly supported by a graphical language, or they provide the underly-
ing semantic model for the language. FSA-based approaches stem from the need to implement
effective behaviors in real-time systems [20]. Several frameworks have been implemented,
proving their effectiveness in real world applications (e.g., [21]). Although modeling behav-
iors based on FSAs is a very intuitive task, these approaches have been mostly limited to
single-robot systems due to the lack of expressiveness in modeling concurrency. Notably,
some methods for an automated FSA-based plan generation have also been developed (e.g.
[34]).

Colbert [31] is a robot programming language that was developed as a component of
the Saphira architecture [32]. Colbert has a syntax which is a subset of ANSI C, while its
semantic is based on FSA. In particular, states correspond to actions while edges are events
associated to conditions. Moreover, Colbert allows some simple form of concurrency even
though, in this case, the semantics are considerably different from standard FSA semantics
and it is very hard to ensure coherence in the behaviors.

123

348 Auton Agent Multi-Agent Syst (2011) 23:344–383

Xabsl [36] is a more recent approach and is based on hierarchical finite state automata.
Xabsl is bundled with a set of language specific tools, which allow for an efficient develop-
ment of behaviors.

Although FSA-based approaches have been very successful in modeling many single-
robot systems, their expressive power limits their applicability to multi-robot systems.
In general, more expressive formalisms are required in order to model the inherent con-
currency of multi-robot systems.

2.2 Belief, Desire, Intention

The Belief, Desire, Intention framework (BDI) [44] has been proposed as an alternative
to FSA-based robot programming. In a BDI architecture, an agent selects behaviors to be
executed (intentions), based on its goals (desires), and the current representation of the envi-
ronment’s state (beliefs). The procedural knowledge is typically encoded in a predefined
library of plans (e.g. [22]). In order to obtain the desired balance between reactivity and goal-
directed behaviors, an agent can commit to the execution of plans and periodically reconsider
them. One key advantage of BDI over FSA-based robot programming is that the designer
needs not specify a predefined ordering of basic behaviors, allowing him or her to draw the
executed plans from a potentially very large search space. On the other hand, no automated
planners nor validation tools are available for BDI frameworks (though see [12,50] for recent
promising developments).

Several architectures inspired by the BDI framework have been proposed for modeling
Multi-Agent Systems (MAS). Two notable such architectures that also model collaboration
among multiple agents are STEAM [51] and, more recently, BITE [28].

STEAM is implemented with a focus on collaborative behaviors, by relying on Cohen
and Levesque’s Joint Intentions Theory [6]. Agents in a STEAM architecture distributedly
monitor the execution of collaborative behaviors (which are organized in a partial hierarchy
of joint intentions), possibly reorganizing the team. Cooperation is implemented in STEAM
through a set of complex domain-independent rules, incorporated in the architecture to form
sophisticated hierarchical team structures. STEAM was used in a number of applications
(e.g. simulated military missions and virtual soccer players), but never on real robotic plat-
forms.

The BITE architecture was specifically designed for robotic applications that involve
collaboration and coordination. To manage teamwork, BITE maintains an organization hier-
archy, a task/sub-task behavior graph, and a library of hierarchically linked social interaction
behaviors. Although no explicit methodological guidance to teamwork design is provided,
one of the strengths of the BITE architecture is the possibility to specify different types of
interaction templates (e.g. for synchronization and task allocation), which can be reused to
automate individual robots’ task selection in different scenarios. BITE is focused on the auto-
mation of teamwork, while the design of individual behaviors is not extensively addressed.
As with other systems based on BDI, BITE does not provide formal validation tools to verify
the consistency of the designed behaviors.

The general BDI approach is orthogonal to PNPs, as PNPs can be used as a representation
formalism for intentions. In fact, in Sect. 6.2, we show an implementation of a joint action,
following the guidelines of the Joint Intentions Theory used in STEAM. Moreover, PNPs
have an organization hierarchy (plans/sub-plans) as in BITE, but are not limited only to model
teamwork. Finally, the use of PNPs allows for exploiting standard validation tools based on
PNs to verify the consistency of the designed behaviors.

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 349

2.3 PN-based approaches

A solution to robot programming that recently gained interest in the scientific community is
the modeling of robotic behaviors through PNs. In particular, there has been a considerable
effort in modeling MAS through PNs [17], given their capability of representing concurrent
systems and shared resources. PN-based systems offer two main advantages with respect to
FSA [40]: PN languages (languages marked by PNs) are a super-set of regular languages
(languages marked by FSA), due to memory and concurrency characteristics. Therefore,
the set of modeled roles and behaviors is potentially richer when using PNs; secondly, PNs
allow for automatic analysis and verification of formal properties on the performance of the
modeled systems. Available tools such as PIPE [1] or TimeNET [57] check PN properties,
both through simulation and closed-form equivalent Markov Chain analysis.2

Therefore, PNs have been widely used in the literature to model Discrete Event Systems
(DES), namely manufacturing systems [53]. PN-based models of robot tasks started with
the pioneer work of Wang et al. [54], where they were used to implement the Coordination
Level of Saridis’ 3-level hierarchy for intelligent machines, including reinforcement learning
algorithms. In the past few years, approaches to plan generation and representation based
on PNs, have gained increasing interest, addressing both multi-agent (MAS) and multi-robot
systems (MRS).

Action representation using PNs in MAS is proposed, for example, in [4]. The model is
limited to purely reactive agents: actions are instantaneous, as they are represented by PN
transitions, and the places of the PN model represent the environmental state of the agent.
In a MAS framework, issues that are typical of embodied agents such as non-instantaneous
actions or uncertain action effects are not specifically addressed. Interactions among agents
have also been modeled by PNs in the literature, with a special focus on the formal modeling
of conversations using colored PNs [8]. A substantial comparative review of the different
approaches, including a colored PN model of multi-agent conversations, where places explic-
itly represent joint interaction states and messages, can be found in [25]. Poutakidis et al.
[43] introduced interaction protocols, specified using Agents UML and translated to PNs, to
debug agent interaction. The debugger uses the PNs to monitor conversations and to detect
when protocols are not correctly followed by the agents. While these works provide for-
mal scalable models of interaction, they do not model actions explicitly, and they are not
concerned with commitment issues, which are relevant in applications where the interaction
among agents/robots is cooperative.

A first group of works using PNs for designing robotic systems develops ad-hoc models
for specific applications rather than providing a formal language for robot programming.
For example, in [48], PNs are used to model a multi-robot coordination algorithm which is
based on an auction mechanism to perform environment exploration. Similarly, [56] shows an
agent based extension of Fuzzy Timed Object-Oriented PNs (proposed in [38]) for the design
of collaborative multi-robot systems for a specific industrial application. Another example
is [35], where the authors report the use of distributed agent-oriented PNs for the modeling of
a Multi-Robot System for playing soccer. These works focus mainly on the PN that controls
the robotic system and on its execution, providing no systematic method to program such a
controller using PNs and/or for the analysis of the whole system properties.

2 For an exhaustive list of available tools see http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/.

123

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/

350 Auton Agent Multi-Agent Syst (2011) 23:344–383

A second kind of PN-based approaches models the robotic system, representing plans as
PNs so as to analyze their properties and/or to synthesize optimal plans from conditional
ones. In [37], the authors propose an approach for modeling single-robot systems. In this
case, users define several possible plans to carry out a task. Then, a reinforcement learning
algorithm is used to select an optimal solution. This approach also exploits formal analysis of
the PN models allowing for qualitative evaluation (i.e. stability, controllability and possibility
of error recovery). This single-robot approach has been tested in two real world applications
regarding manipulators and mobile robots. A follow-up work is presented in [9], but in this
case the PN model explicitly includes a representation of the environment. Nevertheless, none
of these works provide a formal PN-based language for plan description and composition.
Furthermore, though they focus on modeling, no models of cooperation or coordination are
proposed.

A third category of works addresses specification and execution monitoring of plans for
multi-robot systems using PNs. The compilation of plans for multiple robots into PNs for
analysis, execution, and monitoring is proposed by King et al. [29]. In this work, plans
for each single robot are generated either by using a graphical interface or by using some
automated planning method. The operators that are used for the PN representation of the
plans are inspired by the STRIPS [18] planning system. Supervisory control techniques are
applied to the PN controller in order to identify possible conflicts that may arise due to the
presence of shared resources among the multiple robots. To deal with unforeseen events,
re-planning is used at run-time, which severely limits the applicability of this approach to
real-rime systems in dynamic environments. Novel supervisory control techniques are also
introduced and applied to simulated and real sensor networks, thereby mixing static and
mobile sensors in [24]. Another formal framework for robotic collaboration based on an
extension to PNs, known as workflow nets, is introduced by Kotb et al. [30] to establish a
protocol among mobile agents/robots based on the task coverage they maintain. PNs are used
to ensure the soundness of the framework and to quantify task performance and determine
goal state reachability. However, none of these works provides a formal PN-based language
for plan description and composition.

Despite the large body of work on modeling robot and multi-robot behaviors through PNs,
there currently is not a standard representation formalism for representing multi-robot sys-
tems based on PNs. Indeed, most approaches provide ad hoc solutions to specific problems.

2.4 Comparison with PNPs

Our goal is to provide a systematic approach to robot behavior programming and verifica-
tion, which addresses cooperation in multi-robot teams supported by a well-defined plan
specification language. Furthermore, the design methodology we present can exploit exist-
ing techniques and tools for plan analysis. To this end, we define PNPs (first introduced in
[58]) as a subset of PNs, by relying on modeling primitives of action languages inspired by
Situation Calculus [39], such as ConGolog [11], and specific structures to model cooperation
among multiple robots, such as Joint Intentions Theory [6]. The resulting language is more
expressive than most approaches in the literature, allowing for complex forms of sensing,
loops, interrupts, concurrency, coordination and cooperation.

It is important to notice that PNPs are very expressive, but also allow for a compact
representation of the behavior of a robot. In comparison with other well-known models for
transition systems based on FSA, PNs (and thus PNPs) are in general exponentially more
compact. For example, a finite structure (but unbounded) PN can represent even an infinite
state automaton. Specifically, we stress that PNPs are more powerful when compared to FSA

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 351

in modeling concurrency. In fact, in FSA-based representations each state of the system is
associated with a node of the automaton, and the execution of concurrent actions requires
to define many states according to all the possible combinations of events occurring during
the parallel execution. The number of FSA states needed to represent the concurrent execu-
tion of different sequences of actions is thus exponential in the number of such sequences,
while in PNPs the number of places and transitions is proportional to the number of these
sequences.

BDI architectures try to address the issue of reducing the dimensionality of the space of
plans by avoiding to commit to assigning a specific ordering in behaviors. This is indeed a
very powerful approach in many application domains, but has the drawback that it is very
hard to design plans, when the domain requires complex behaviors where atomic actions are
highly coupled and the degree of optimality of the solution is a key factor.

PNs, like as FSA, implicitly commit to assigning a specific ordering of behaviors. Indeed,
this is claimed as an advantage, because this way one reduces the dimensionality of the space
of plans where the optimal plan must be searched. This stems from the claim that one can
design simple FSA or PNs for components of the involved behaviors and their interaction
with the world: the actual behavior results from the composition of those behaviors, filtering
out combinations that can never occur and/or that the designer knows right from the start
how to avoid. In fact, the initial components force some behavior sequences based on the
designer expertise, which leaves the possibility of other combinations so as to enable differ-
ent alternative plans for the same task (e.g., through conflicts in PNs). Clearly, quality and
complexity of the plans comes at a cost: the modeling effort required for designing behaviors
based on PNs.

In order to address the complexity of plan design, and opposed to state of the art PN-based
approaches, PNPs provide a clear systematic methodology for modeling complex single robot
and collaborative behaviors through PNs. PNPs are very intuitive and require a small mod-
eling effort, due to the explicit characterization of atomic structures, which are explicitly
interpreted as actions and operators to combine actions. PNPs support plan design through
the use of PN analysis methods. These methods can be used to verify important properties of
the plans which are required for a robust execution. Moreover, PNPs allow for a distributed
execution of plans which has the notable characteristic of preserving the properties verified
for the plans at design time.

3 Petri Net Plans syntax

Petri Net Plans allow for specifying plans describing complex behaviors for mobile robots.
These plans are defined by combining different kinds of actions (ordinary actions and sensing
actions) using control operators. Initially we ignore multi-robot operators that are used to
achieve coordination and collaboration. Thus, we can consider the multi-robot system, as
composed by robots which execute their own PNP independently from each other. Never-
theless, as we will see in Sects. 5 and 6, PNPs naturally model multi-robot systems when
enriched with multi-robot operators.

In the following, we first provide an interpretation of PNs for behavior execution, namely
PNP structures. Then, we define the PNP Language (PNPL). PNPL is a high-level robot
programming language that builds upon PNP structures and that provides a methodology for
building PNP structures. Finally, we define PNPs as elements of PNPL, that must obey to
runtime constraints. These constraints can be verified based on standard PN analysis tools.
More details on the (operational)semantics of PNPs are given in Sect. 4.

123

352 Auton Agent Multi-Agent Syst (2011) 23:344–383

3.1 PNP structures

PNP structures are PNs with a domain specific interpretation aimed at modeling robotic
behaviors. In particular, they are PNs that have at most one token per place and edges of
weight one.

Definition 1 (PNP structure) A PNP structure is a PN pn = 〈P, T, F, W, M0〉 and a goal
marking G which specifies the set of desired termination states. We define a PNP structure
as the following 6-tuple:

〈P, T, F, W, M0, G〉
– P = {p1, p2, . . . , pm} is a finite set of places.
– T = {t1, t2, . . . , tn} is a finite set of transitions.
– F ⊆ (P × T) ∪ (T × P) is a set of edges.
– W : F → {1} is a weight function for edges. In PNPs w(fs, fd) = 1 for each pair

fs, fd ∈ F .
– M0 : P → {0, 1} is the initial marking, denoting the initial state of the structure.
– P ∪ T �= ∅ and P ∩ T = ∅
– G : P → {0, 1} is the goal marking.

PNP structures can be considered as PNs, with a domain specific interpretation and an
extended semantics. In a PNP, places have different interpretations, thus they are partitioned
into four classes: P = PI ∪ PO ∪ PE ∪ PC , where:

1. PI is the set of input places, which model initial configurations of the PNP;
2. PO is the set of output places, which model final configurations of the PNP;
3. PE is the set of execution places, which model the execution state of actions in the PNP;
4. PC is the set of connector places, which are used to connect different PNPs.

Also transitions are partitioned in three subsets T = T S ∪ T T ∪ T C , where:

1. T S is the set of start transitions, which model the beginning of an action/
behavior;

2. T T is the set of termination transitions, which model the termination of an action/behav-
ior;

3. T C is the set of control transitions, which are part of the definition of an operator.

A PNP structure models the execution of actions by using specific places, that represent
the execution states of the related behaviors. In particular, each action has an execution place
e ∈ PE and M(e) determines whether the behavior is active or not. Thus, the set of execution
places of a PNP structure (i.e., PE) models the execution state of the system and its temporal
evolution characterizes the system dynamics.

In the remainder of this section, we describe PNP structures ignoring their markings. More-
over, we will omit W , since it is constantly set to 1. Therefore, we consider a generic PNP
structure as the triple 〈P, T, F〉 and, for the sake of readability, we present the topological
structure of nets (i.e., F) through the graphical representation of PNs.

3.2 PNP Language

PNP Language defines a subset of PNP structures aimed at providing a methodology for
designing PNP structures. We define the PNPL in terms of PNP structures, which can be
build upon atomic actions and combined through operators. In the following, we will refer
to PNP structures, simply as structures.

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 353

t s pe t e pp
i o

p

p t p

t

t

i s e

ef
p

of

otet

(b)(a)

Fig. 1 Actions: a ordinary action and bsensing action

3.2.1 Actions

Actions represent primitive behaviors of robots and are the atomic concept upon which we
build complex PNP structures. Actions are characterized by having T C = ∅. There are two
types of actions: (1) ordinary action and (2) sensing action.

Ordinary-action. This elementary structure models a deterministic action. It explicitly rep-
resents the action as non-instantaneous, by defining its start event ts , execution state pe, and
termination event te. An ordinary action is the structure shown in Fig. 1a, where:

– PI = {pi }, PE = {pe} and PO = {po},
– T S = {ts} and T T = {te}.

Sensing-action. Sensing actions are a special kind of non-deterministic actions, where the
actual outcome of the action depends on some property which may be known only at execution
time. A sensing action is the structure shown in Fig. 1b, where:

– PI = {pi }, PE = {pe}, PO = {pot , po f },
– T S = {ts} and T T = {tet , te f }.
and where tet and te f are the transitions ending the action, when the sensed property is true,
and when it is false, respectively. Analogously, the places pot and po f terminate the action,
when the sensed property is true and when it is false. Notice that, it is possible to extend
sensing actions in order to have more than two mutually exclusive outcomes by augment-
ing the number of termination transitions and output places. We also consider an instanta-
neous variant of sensing actions (i.e., without ts and pe), which we call evaluation action.
Evaluation actions are used to query the knowledge of the robot, and do not require to act in
the real world.

3.2.2 Operators

PNP structures are modular, since they allow for combining multiple structures in order
to build more complex ones. Two structures can be combined by merging two places, one
for each structure. This allows for sequencing behaviors and constructing loop structures.
Moreover, it is possible to monitor the execution state of structures by using interrupt oper-
ators, that tie the execution places of an action with the input places of another structure,
through a transition (interrupt) that suspends the execution of the current action and triggers

123

354 Auton Agent Multi-Agent Syst (2011) 23:344–383

Fig. 2 The sequence of two ordinary actions

(c)(b)(a)

Fig. 3 Three operators: a Interrupt; b Fork; c Join

a recovery behavior. This feature is very useful when dealing with robots in dynamic situa-
tions, where failure recovery is a fundamental issue. Finally, concurrency operators are used
to model concurrent behaviors in single robot, or multi-robot actions.

Therefore, in order to create complex PNPs, four kinds of operators are defined: sequence,
interrupt, fork and join. Operators are PNs used as control structures, which do not refer to spe-
cific behaviors. Operators are thus characterized by having PE = ∅, T S = ∅, and T T = ∅.

Sequence operator. The sequence operator combines two structures by merging two of
their places. For example, an output place of a first structure can be merged with an
input place of a second one, to obtain a chain of the two structures. The sequence of a
motion behavior for approaching a ball (i.e., gotoball) and a kicking behavior are shown
in Fig. 2. The dashed circle shows the result of merging the output place of the goto-
ball action and the input place of the kick action. Formally, given two PNP structures
P N1 = 〈P1, T1, F1〉 and P N2 = 〈P2, T2, F2〉, a non-execution place p ∈ PI

1 ∪ PO
1 ∪ PC

1
and an output place o ∈ PO

2 , the sequence of P N1 and P N2 obtained by merging p with
o is a PNP structure P N = 〈P, T, F〉, with P = P1 ∪ P2 − {o}, T = T1 ∪ T2, F =
F1 ∪ F2 − {〈te, o〉} ∪ ⋃

te∈•o{〈te, p〉}, where •o is the set of input transitions of o. Moreover,
PI = PI

1 ∪ PI
2 − {p}, PO = PO

1 ∪ PO
2 − {o}, PE = PE

1 ∪ PE
2 , PC = PC

1 ∪ PC
2 ∪ {p},

if p ∈ PI
1 , while PC = PC

1 ∪ PC
2 otherwise. This operator can be applied to two places

of the same structure for creating loops. Thus, when P N2 = P N1, we call this operator
loop-sequence.

Interrupt operator. The interrupt operator, shown in Fig. 3a, is a very powerful tool for
handling action failures. In fact, it can interrupt actions upon failure events and activate
recovery procedures. In the example shown in Fig. 4, the gotoball action is monitored by
an interrupt triggered when the ball is stolen by an opponent. As a recovery procedure, the
robot starts a defensive behavior. The dashed circles show the result of merging the execu-
tion place of the gotoball action with the interrupt and the result of merging of the interrupt
and the input place of the defend action. Interrupts can also be used to interrupt multiple
actions simultaneously (see Fig. 6b for an example). Formally, given two PNP structures
P N1 = 〈P1, T1, F1〉 and P N2 = 〈P2, T2, F2〉, a set of execution places {ei } such that
ei ∈ PE

1 and a non-execution place p ∈ PI
2 ∪ PO

2 ∪ PC
2 , the interrupt of P N1 through

P N2 is a PNP structure P N = 〈P, T, F〉, with P = P1 ∪ P2, T = T1 ∪ T2 ∪ {tint},

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 355

Fig. 4 The interrupt of an action and its recovery procedure

Fig. 5 The fork and the subsequent join of two actions

F = F1 ∪ F2 ∪ ⋃
i {〈ei , tint〉} ∪ {〈tint, p〉}, where tint is the transition associated to the

interrupt condition. Moreover, PI = PI
1 ∪ PI

2 − {p}, PO = PO
1 ∪ PO

2 , PE = PE
1 ∪

PE
2 , PC = PC

1 ∪ PC
2 ∪ {p}, if p ∈ PI

1 , while PC = PC
1 ∪ PC

2 otherwise. Finally, T C =
T C

1 ∪{tint}. Interrupt is often used to go back to a previous part of the plan in order to re-try the
execution of a portion of it. In these cases, P2 = P1 and we call this operator loop-interrupt.

Many robotic systems are required to handle concurrency due to: (1) the possibility of
actuating simultaneously, and independently, several parts of the body and (2) the possibility
of controlling multiple robots. In the following, we deal with the first issue, while we provide
a discussion of multi-robot distributed execution, along with the definition of appropriate
operators, in Sects. 5 and 6. In particular, here we present fork and join operators for dealing
with multiple actuators.

Fork operator. Each token in a structure can be thought as a thread of execution. The fork
operator generates multiple threads from a single thread of execution. Figure 3b shows a
fork structure producing two threads of execution. The fork operator is characterized by
T C = {t f }, PI = {pi } and PO = {po1, po2}. Notice that the operator can be extended
to generate more threads by adding new output places. Formally, the fork operator of two
PNP structures P1 and P2 is the sequence of a fork structure with P1, through po1, and P2,
through po2. The left side of Fig. 5 shows the fork of the actions gotoBall and track Ball.
The dashed circles show the result of merging the output places of the fork operator with the
input places of the actions.

Join operator. The join operator allows the synchronization of multiple threads of execution.
This operator consumes multiple threads of execution simultaneously, and generates a single
synchronized thread. The join structure is shown in Fig. 3c, for the case of two threads. As
in the previous case, the operator can be generalized to synchronize more threads by adding

123

356 Auton Agent Multi-Agent Syst (2011) 23:344–383

new input places. The join operator is characterized by T C = {t j }, PI = {pi1, pi2} and
PO = {po}. Formally, the join operator of two PNP structures P1 and P2 is the sequence
of P1, through pi1, and of P2, through pi2, with the join structure. The right side of Fig. 5
shows the join of the actions gotoBall and track Ball. The dashed circles show the result
of merging the output places of the actions with the input places of the join operator.

Notice that the fork and join operators allows for duplicating tokens, thus enabling con-
current execution of actions. Indeed, in the example before, when the execution places of
both the actions gotoBall and track Ball are marked, the actions are actually executed in
parallel. This mechanism is not limited to concurrent execution of two actions, but it can be
used to model concurrent execution of complex behaviors. By using a different token for
each execution thread, it is possible to model in a compact way all the possible combinations
of event occurring during such a parallel execution. For example, the parallel execution of n
sequences of actions of length k, is represented in a PNP with O(k n) places and transitions,
while it would require for example O(kn) states if using a FSA-based representation.

The PNPL describes the subset of PNP structures inductively defined as the closure of
actions, under the sequence, interrupt, fork and join operators. In particular, the PNPL is the
set of PNP structures described as follows.

Definition 2 (PNP Language) A PNP structure s is in PNPL (i.e., s ∈ PNPL) if and only if
there exist s1 ∈ PNPL and s2 ∈ PNPL, such that at least one of the following assertions hold:

– s is an ordinary or a sensing action;
– s is the sequence of s1 and s2;
– s is the interrupt of s1 and s2;
– s is the fork of s1 and s2;
– s is the join of s1 and s2.

3.3 PNP definition

In order to define behaviors that are actually executable, PNPs must fulfill some additional
requirements on their behavior at runtime.

Tokens of PNPs are defined as execution threads, which activate the execution of atomic
behaviors, represented by actions. A first important property is to enforce that the number of
execution threads is bounded, in the sense that for any possible execution state there is no
more than a token in each place. If this is not the case, it could be that multiple execution
threads control the same atomic action. This is an undesirable situation because the semantics
of PNPs assumes that each action is an atomic behavior, thus controlled by a single thread of
execution. Nevertheless, there is no guarantee that any PNP respects this constraint during
execution.

Definition 3 A PNP structure 〈P, T, F, W, M0, G〉 is safe if any reachable marking M
satisfies:

∀pi ∈ P M(p) ≤ 1

that is, the net is 1-bounded.

In PNs, this property is called 1-boundedness, and can be automatically verified through
standard analysis techniques (e.g., coverability tree).

Another common requirement is that any transition defined in a PNP is not dead, in the
sense that there exists a sequence of markings from M0 such that the transition is fired at least

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 357

once. Clearly, if there exists a transition which can never be fired, there is something wrong
in the plan, e.g., because there is a dead-lock in the net. Thus, we want a minimal PNP, in
the sense that each transition in the net is necessary and, thus, it can be fired at least once in
some sequence of markings. This property corresponds to L1-liveness in PNs.

Definition 4 A PNP structure 〈P, T, F, W, M0, G〉 is minimal if it is L1-live.

In PNs, this property (L-liveness) can be automatically verified through standard analysis
techniques (i.e., liveness analysis).

Finally, notice that, as a structural difference from PNs, PNPs have a set of goal markings
which describe the success of the plan. In this case, it makes sense to execute a plan if the
goal is reachable from any state. In PNs, such goal state is called a home state. If the goal
state is not a home state, the plan execution could prescribe useless actions or get stuck in a
dead-lock.

Definition 5 A PNP structure 〈P, T, F, W, M0, G〉 is effective, if the goal marking is a home
state.

In PNs, the property that the goal state is a home state can be automatically verified through
standard analysis techniques (i.e., reachability analysis).

Based on the previous considerations, we constrain PNPs to be safe, minimal and effective.

Definition 6 (Petri Net Plan) A Petri Net Plan (PNP) P is a PNP structure such that P ∈
PNPL and such that:

– P is safe (Definition 3)
– P is minimal (Definition 4)
– P is effective (Definition 5)

PNPs, as defined above, are actually executable by the execution algorithm described in
the next section.

3.4 Sub-plans

In the design of a PNP, sub-plans can be used for modularity and readability. A sub-plan
is represented as an ordinary action, but it refers to a structure rather than to a primitive
behavior. A plan execution module, running on the robot, takes care of dynamically loading
sub-plans in case a super-plan invokes its execution. In particular, whenever a start transition
of a sub-plan is fired, the marking of the sub-plan is set to the initial one. The sub-plan will
then be executed, possibly concurrently with other primitive behaviors or sub-plans, until
it reaches its goal marking or a condition labeling its ending transition is met. Moreover,
sub-plans allow for a more powerful use of interrupts, which can be used to inhibit a whole
complex behavior (i.e., a sub-plan) at once.

A complete discussion of PNPs with sub-plans is outside of the scope of this paper.
Nevertheless, the discussion which follows can be generalized in many cases to PNPs with
sub-plans. In the simplest case where sub-plans are used as macros, a PNP with sub-plans
can be transformed to a PNP without sub-plans by recursively unfolding sub-plans. In the
following, we discuss only PNPs without sub-plans.

3.5 Robotic soccer example

Consider a soccer robot, which must find a ball in a soccer field, reach it and then shoot.
In this simple example we assume that, initially, the ball is not far away from the robot.

123

358 Auton Agent Multi-Agent Syst (2011) 23:344–383

F
ig

.
6

A
ro

bo
tic

so
cc

er
ex

am
pl

e:
st

ri
ke

r
ro

bo
t.

T
he

la
be

lin
g

sh
ow

n
is

an
ex

am
pl

e
of

th
e

ac
tu

al
sy

nt
ax

us
ed

fo
r

ou
r

ex
ec

ut
ab

le
pl

an
s.

L
ab

el
s

ch
ar

ac
te

ri
ze

ac
ti

on
no

de
s

an
d

co
nd

iti
on

s
as

so
ci

at
ed

to
tr

an
si

tio
ns

.T
he

ne
ta

de
no

te
s

a
PN

P
st

ru
ct

ur
e

w
hi

ch
is

no
ta

va
lid

PN
P,

w
hi

le
ne

tb
is

a
va

lid
PN

P

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 359

The PNP in Fig. 6a shows a possible PNP for this behavior. The robot starts to seek for the
ball using a sensing action. Notice that a branch of the sensing action, is closed in a loop.
Thus, the robot will continue to seek for the ball until it finds it. Then, the PNP has a fork
operator, in order to: (1) approach the ball by actuating the legs of the robot and (2) track
the ball with the head. Both actions are monitored by interrupt operators. In one case, if the
tracking behavior looses visual contact with the ball, it will rollback to the seek behavior. In
the other case, if someone moves the ball far away from the robot, it will rush to get again
close to it. Finally, once the robot has reached the ball, the two actions join, and then the
robot shoots the ball towards the opponent goal.

The analysis of such plan brings about some issues. First, the net is not safe. If the robot
sees the ball, but this is far away, it will rush and correctly continue to track the ball. Never-
theless, once it is closer to the ball, the approach ball and the track ball behaviors will both
receive an execution token, thus resulting in two tokens in the trackball behavior. Moreover,
the PNP is also not minimal. In particular, the join transition can never be fired because it has
an input place which is a source, and has no tokens in the initial marking. In this specific case,
this also means that the PNP is not effective, because the goal marking can never be reached.
These issues can all be detected with PN analysis tools. A valid PNP for this behavior is
shown in Fig. 6b.

4 Petri Net Plans execution

The operational semantics of PNPs, as for any PN, is defined by the firing rule. The firing
rule describes the dynamics of the system based on events, which are generally model depen-
dent. That is, events, specific to the model at hand, determine the actual firing of enabled
transitions. The main difference with respect to PNs, is in the way PNPs interpret events and
transitions: we can distinguish among controllable and non-controllable transitions, depend-
ing on whether the controller (i.e., executor) of the plan can control or not the related
events. Non-controllable transitions usually depend on external events, while controllable
ones depend on control strategies.

The only controllable transitions in PNPs are the ones which correspond to action starts.
In this paper, we assume that plans do not have non-deterministic choices for controllable
transitions. In this case, we can adopt a very simple control strategy, which states that all
the controllable transitions, when enabled, must fire. Nevertheless, the proposed approach
is applicable also if an appropriate control strategy is adopted when plans contain non-
deterministic choices (e.g., GOLOG like).

In PNPs, non-controllable transitions are those which depend on observable properties of
the environment. For example, a robot could fire a transition (e.g., interrupting a gotoball
behavior), if it looses visual contact with the ball. In order to specify external events for
non-controllable transitions, we define a labeling mechanism. In particular, all non-control-
lable transitions may be labeled with conditions to be verified in order for the related event
to occur. A condition φ on the transition t is denoted with t.φ. If no condition is specified
for a non-controllable transition, we will consider it to be T rue. We assume that the actual
knowledge of a robot is accessible for the executor through a knowledge base kb. During
the execution of a plan, we determine whether a given external event occurs by querying
its local knowledge base kb. That is, an enabled transition t fires if kb | t.φ. During the
execution of a PNP the knowledge base of the robot could change, due to the acquisition of
new knowledge. In particular, we characterize the evolution of a PNP through a sequence of

123

360 Auton Agent Multi-Agent Syst (2011) 23:344–383

Fig. 7 An abstract robot architecture for PNPs

markings and knowledge bases 〈Mi , kbi 〉, representing the execution state and the knowledge
of a robot at time τi .

Definition 7 (Evolution) An Evolution of a PNP P = 〈P, T, F, W, M0, G〉 is a tempo-
rally annotated sequence of pairs (〈M0, kb0〉, . . . , 〈Mn, kbn〉). In particular, each 〈Mi , kbi 〉
represents a marking Mi obtained, given a knowledge base kbi , at time τi .

An Admissible Evolution of a PNP P is a sequence of markings, which can be obtained
by evolving P from the initial marking, according to the semantics of events in PNPs.

Definition 8 (Admissible Evolution) An Admissible Evolution of a PNP P = 〈P, T, F,

W, M0, G〉 is a an evolution (〈M0, kb0〉, . . . , 〈Mn, kbn〉), where M0 is the initial marking,
∀i<n Mi �∈ G and such that:

∀i∈{0..n−1} ∃t∈T | enabled(t, Mi) ∧ f ire(Mi , t) = Mi+1 ∧ kbi+1 | t.φ

4.1 Abstract robot architecture

For the sake of clarity, we describe the execution algorithm for PNPs based on an abstract
robot architecture shown in Fig. 7. Nevertheless, the use of PNPs is not restricted to this
particular type of architecture. Specifically, we define a two layer architecture:

– Symbolic layer: composed by a PNP library, a knowledge base and a PNP executor.
– Numeric layer: composed by data fusion modules and low level robotic behaviors.

Symbolic layer. The symbolic layer consists of the PNP executor, which implements the PNP
execution algorithm, and the Knowledge Base, which maintains the current information on
the environment. The evolution of the plan must be controlled according to the robot’s actual

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 361

knowledge (i.e., according to its epistemic state of knowledge), since we can not assume that
the robot has complete knowledge about all the properties of the environment. The Knowl-
edge Base can be implemented in any formalism: for example, in our implementation, we use
a simple conjunction of propositions. Analogously, queries � can be represented as terms or
formulas in any formalism consistent with the knowledge base. For the purposes of our plan
execution method, we only require that the robot is able to evaluate queries over the current
model of the world, i.e., to compute kb | t.φ.

Numeric layer. In order to effectively interpret noisy and unreliable sensor data, we assume
that our robot can use standard numeric approaches for data fusion [52], such as localization,
mapping, tracking, etc. Notice that this numerical information must be anchored to the sym-
bols in the knowledge base [7]. In order to effectively control the behavior of the robot, we
assume the availability of a set of implemented actions A = {a1, . . . , ak}. According to the
specification on PNPs, each action considered here is an abstraction for the implementation of
a specific behavior that the robots can execute. PNPs allow for both threaded and interleaved
concurrency. In the threaded case, each action is executed in a separate thread with respect to
other actions. This means that after an action is started, it will remain active until either end or
interrupt is invoked. In the interleaved case, a unique thread is used both for the executor and
all the actions. Roughly, the idea is that each action implements an executeStep() method,
which executes a single step of the action. The PNP executor then invokes at each cycle such
methods for all actions which have a token in their execution place. Both execution models
can be used for executing PNPs. For simplicity, in this paper we refer to the case of threaded
execution.

4.2 PNP execution algorithm

Algorithm 1 is the execution algorithm for PNPs. As previously described, it relies on a
Knowledge Base kb for evaluating events related to non-controllable transitions and on a set of
implemented actions, which can be controlled through the start (), end() and interrupt ()
procedures. The main procedure execute takes as input a PNP 〈P, T, F, W, M0, G〉 and
evolves it producing the control commands for the basic behaviors (which are associated
to the firing of transitions). This process generates a sequence of transitions {M0, . . . , Mn}
that, possibly, evolve the system from the initial marking M0 to a goal marking Mn ∈ G.
In particular, at each step, Algorithm 1 checks (line 4) if each transition t ∈ T is
enabled (enabled(t, Current Marking)) and if the related event occurs. If these two con-
ditions are satisfied, the procedures for action control are handled within the sub-procedure
handleT ransi tion (line 5) and the transition t is fired (line 6) resulting in a new marking.
handleT ransi tion takes care of appropriately activating, interrupting or deactivating the
related action. The details of how this is done depend on the actual implementation of the
system.

The algorithm correctly executes a PNP, as shown by the following theorem.

Theorem 1 (Correctness) Algorithm 1 correctly executes any PNP P , i.e.:

– any computed evolution (〈M0, kb0〉, . . . , 〈Mn, kbn〉) of P is an admissible evolution
– the behaviors of a robot are started, interrupted or ended, when the start, the end and

interrupt transitions of the corresponding actions are fired;

123

362 Auton Agent Multi-Agent Syst (2011) 23:344–383

Algorithm 1 PNP Execution Algorithm

Domains:

A = {a1, . . . , ak }: Set of Implemented actions
� : Set of terms and formulas about the environment
T rT ype = {start, end, interrupt, standard}

Structures:

T ransi tion : 〈a ∈ A, φ ∈ �, t ∈ T rT ype〉
Action : 〈start (), end(), interrupt ()〉

Global variables:

K nowledgeBase : kb

procedure execute(P N P 〈P, T, F, W, M0, G〉)
1: Current Marking = M0
2: while Current Marking �∈ G do
3: for all t ∈ T do
4: if enabled(t, Current Marking) ∧ kb | t.φ then
5: handleT ransi tion(t)
6: Current Marking = f ire(Current Marking, t)
7: end if
8: end for
9: end while

procedure handleT ransi tion(t)

if t.t = start then
t.a.start ()

else if t.t = end then
t.a.end()

else if t.t = interrupt then
t.a.interrupt ()

end if

Proof In order to prove that Algorithm 1 correctly executes a PNP we must show that:

1. any evolution is admissible
2. behaviors are controlled according to the semantics of PNPs.

To prove that any evolution is admissible, we need to show that evolutions obey the firing rule
(i.e. enabled(t, Mi) ∧ f ire(Mi , t) = Mi+1), and that the conditions labeling transitions
are correctly evaluated (kbi+1 | t.φ). The former requirement is explicitly satisfied by lines
4 and line 6, while the latter by line 4.

The second part of the proof is verified by a direct analysis of the procedure
handleT ransi tion(·). ��

5 Coordination using PNPs

PNPs can be effectively used also to model multi-robot behaviors, allowing for dealing with
the typical issues encountered when designing a multi-robot systems, in particular, action
synchronization and joint intentions.

In the following, we show how PNPs can be used to support coordination so as to avoid
interference among robots and enhance the performance of the system through the use of joint
actions. In the literature, the design of multi-robot plans has been considered either as plan

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 363

sharing (or centralized planning), where the objective is to distribute a global plan to robots
executing them, or as plan merging, where individual plans are merged into a multi-robot plan
(see [15] for details). In our work, we follow centralized planning. Specifically, we provide
a distributed execution model by implementing a centralized planning for distributed plans
approach [15]. Our distributed execution model allows to execute a set of single-robot PNPs,
derived from a multi-robot PNP, without the need of a central coordinator robot.

5.1 Synchronization operators

We can consider a multi-robot PNP, for a team of robots R1, . . . , Rn , as the union of n PNPs
(one for each robot). In a multi-robot PNP, each element of the net is labeled with the unique
name of the robot that is in charge of its execution. This will be indicated in the following
with the prefix R j . For example, R j .P refers to the set of places associated to robot R j . Thus,
given n single-robot PNPs {〈R j .P, R j .T, R j .F〉} j=1...n we define a multi-robot PNP as:

P = 〈P, T, F〉

where P = ⋃n
j=1 R j .P, T = ⋃n

j=1 R j .T, F = ⋃n
j=1 R j .F .

Such a multi-robot plan consists simply of n independent plans. When dealing with multi-
robot systems, the main issue is how to represent the interactions among actions performed
by different robots (i.e. among plans). The multi-robot plan, as previously defined, fails to
capture such interactions and may result in the execution of conflicting actions. Therefore,
we want to be able to order actions across plans so that overall consistency is maintained and
conflicting situations are avoided.

We model multi-robot plans as a collection of single-robot plans enriched with synchro-
nization constraints to avoid unsafe interactions. In particular, we introduce new types of
operators, assuming that robots can communicate through a reliable channel. In the fol-
lowing, we describe a hard synchronization operator (h_sync), that synchronizes two plans
at a given point in time, and a soft synchronization operator (s_sync), which introduces a
precedence relation among the actions of two plans.
Hard synchronization operator. The hard synchronization operator (h_sync), shown in
Fig. 8, supports time synchronization for the actions of two robots R1 and R2. The operator
has two input places PI = {pi1, pi2} and two output places PO = {po1, po2} and T C = {t}.
The operator is similar to a join and a fork, except that it is used to synchronize behaviors of
different robots. Formally, consider two robots R1 and R2, four PNPs R1.P1, R1.P2, R2.P1,
and R2.P2, and the h_sync operator. The PN formed by the sequence of R1.P1 and h_sync
through the place pi1, the sequence of R2.P1 and h_sync through the place pi2, the sequence
of R1.P2 and h_sync through the place po1, and the sequence of R2.P2 and h_sync through
the place po2 is a multi-robot PNP.

Fig. 8 A h_sync operator

123

364 Auton Agent Multi-Agent Syst (2011) 23:344–383

Example 1 Figure 11a shows a PNP for two robots which have to lift a table by grabbing
it at two opposite sides. The nodes for action structures and synchronization operators are
grouped, for readability, by a common label. In this example, R1 and R2 can reach the two
sides of the table asynchronously, but have to lift it simultaneously. The h_sync operator
ensures that the robots will start to lift the table when both have reached it. In particular,
the input transition t acts as a join waiting for both actions R1.gotoLe f t SideT able and
R2.gotoRight SideT able to terminate. When both actions have terminated, the transition t
acts like a fork enabling the simultaneous execution of the lift actions.

Soft synchronization operator. The soft synchronization operator (s_sync), shown in Fig. 9,
can be used to force a precedence relation among the actions of two different robots. The
operator has two input places PI = {pi1, pi2}, two output places PO = {po1, po2}, one
connector place PC = {pm} and two control transitions T C = {t f , t j }. Formally, consider
two robots R1 and R2, four PNPs R1.P1, R1.P2, R2.P1, and R2.P2, and the s_sync operator.
The PN formed by the sequence of R1.P1 and s_sync through the place pi1, the sequence
of R2.P1 and s_sync through the place pi2, the sequence of R1.P2 and s_sync through the
place po1, and the sequence of R2.P2 and s_sync through the place po2 is a multi-robot PNP.

Example 2 Figure 12a shows an example of the use of the s_sync. In this example, there
are two robots R1 and R2. The first robot is a mail delivery robot and has a manipulator,
while the second is a vacuum cleaner robot and has no manipulation ability. The first robot
opens the door of the room to be cleaned and then moves on to deliver the mail. The second
robot moves to the door and the enters the room to clean it. The problem is that the second
robot has to be sure that the door is open before entering the room. To this end, we can add a
s_sync. This allows the first robot to notify the second that the door is open, without having
to wait for the second robot to reach the door. On the other hand, the second robot, when
received the notification, can go on and enter the room safely.

5.2 Distributed execution

The semantics of a multi-robot PNP is the same as a single-robot PNP, in the case of mul-
tibody planning [46], where a single centralized agent can dictate actions prescribed by the
plan and query the knowledge base of each robot. Nevertheless, this approach is not desirable,
because it introduces a single point of failure in the system (i.e. the centralized agent).

We show that multi-robot PNPs allow for distributed execution by providing an operational
semantics for distributed execution. Roughly, given a multi-robot PNP, we can automatically
produce a set of single-robot PNPs, by isolating the portion of the plans relative to each robot
and by replacing synchronization operators with communication actions. Each single-robot
plan can be locally executed by a robot without the need of a centralized coordinator, while
correctness is maintained by communication actions. In particular, we aim at reproducing
the behavior of synchronization operators in a distributed way, by replacing the synchroniza-
tion operators with appropriate combinations of a non-blocking send action and a blocking
receive action. The replacement of synchronization operators with communication actions
leads to a distributed version of the firing rule, specific to synchronization structures.

We assume communication to be reliable. Moreover, we assume that the communication
actions are instantaneous, and as such, we represent them as a single transition (see Fig. 10).
The assumption of communication being instantaneous is often reasonable, given that robot
actions involve moving actuators in the physical world that usually requires orders of magni-
tude more time than communication. So in this article we consider reliable communication

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 365

Fig. 9 A s_sync operator

Fig. 10 The communication
primitives: blocking receive and
non-blocking send

whose execution time is bounded and significantly lower than action execution cycle. When
this is not guaranteed, the current formulation should be extended with more complex forms
of synchronization that use a non-instantaneous model of communication, but this aspect is
beyond the scope of the present article.

The two communication actions are receive(Rs, id) and send(Rr , id), where Rr is the
robot that receives the message id and Rs is the robot sending it; id is a unique identifier for
the synchronization operators (which can be obtained by enumerating the operators). When
Rs performs the send(Rr , id) action, it instantaneously and reliably sends the message id
to Rr , which stores it as the pair 〈Rs, id〉 in a buffer. Pairwise, a receive(Rs, id) is executed
by Rr only if there is a pair 〈Rs, id〉 in the buffer. If this is the case, the action fires removing
the pair from the buffer.

Distributed hard synchronization. Figure 11 shows the decomposition of a centralized plan
using h_sync, Fig. 11a, into two single robot plans, Fig. 11b, where the top plan belongs to
R1 and the bottom one to R2. The decomposed plans look very similar to the centralized one,
but for the h_sync being replaced by two communication actions. The joint execution of the
two plans leads to the same behavior of the multi-robot plan, when executed centrally. To
this end, the behavior of the communication primitives send(r, id) and receive(r, id) has a
key-role. Assume, without loss of generality, that R2 reaches the table first. This means that it
will perform a non-blocking send(R1, id) in a separate thread, and then stop on the blocking
receive receive(R2, id). When R2 arrives on the other side of the table, it will perform a
non-blocking send(R2, id) in a separate thread. At this point, both robots will have received
the id message, and will move on lifting the table together.

Distributed soft synchronization. Consider now the example of s_sync shown in Fig. 12a, and
the two plans derived from it in Fig. 12b. In this case, the s_sync operator s_sync(R1, R2), is
decomposed in only two primitives: a non-blocking send and a blocking receive. The reason
for the asymmetric decomposition is that the s_sync has a different behavior depending
on the robot. In particular, the robot R1 needs only to send a message id to robot R2, that
states that it accomplished its task (i.e., opening the door). The send message is non-blocking

123

366 Auton Agent Multi-Agent Syst (2011) 23:344–383

because there is no need to wait for executing enter Room. Nevertheless, robot R2 is blocked
at receive(R1, id) on the main thread, because it has to be sure that openDoor has ended,
before performing enter Room.

Distributed execution algorithm

We can, thus, decompose a PNP P into several nets 〈R1.P, . . . , Rn .P〉, one for each robot.
Each Ri .P can be executed locally on robot Ri and asynchronously with respect to other
robots. The exchange of messages among the robots allows to coordinate the behavior of
each Ri .P .

Definition 9 (Distributed Execution Algorithm—DEA) Given a PNP P for n robots, and
its decomposition 〈R1.P, . . . , Rn .P〉, the distributed execution of P consists of the parallel
execution of each Ri .P according to Algorithm 1.

Notice that the execution of each Ri .P is accomplished as described in Sect. 4 and the
execution of each Ri .P is performed based on the local knowledge base Ri .kb of robot Ri .
Thus, each transition t ∈ Ri .T is fired, if t is enabled and if Ri .kb | t.φ. The distributed
evolution of a set of P N Ps {Ri .P = 〈Ri .P, Ri .T, Ri .F, Ri .W, M0, G〉} is a set of evolutions
ei = (〈M0, Ri .kb0〉, . . . , 〈Mn, Ri .kbn〉), one for each Ri .P .

In order to compare the behavior of a centralized execution with respect to a distributed one,
we introduce the concept of behavioral evolutions. Behavioral evolutions show the evolution

(a)

(b)

Fig. 11 a A multi-robot PNP using h_sync. b The single-robot PNPs obtained from the decomposition
of the multi-robot one

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 367

(a)

(b)

Fig. 12 a A multi-robot PNP using s_sync. b The single-robot PNPs obtained from the multi-robot one

of a net considering the marking of places, which actually control the behavior of the robot.
This is obtained through the projection of the marking vector to a subspace, where places
of synchronization operators (both centralized and distributed) are dropped. This allows us
to verify if a centralized execution is equivalent to a distributed one, independently of the
specific synchronization operator used.

Definition 10 (Behavioral Evolution) Given the evolution e = (〈M0, Ri .kb0〉, . . . ,
〈Mn, Ri .kbn〉), we say that its behavioral evolution is be = (〈Mb

0 , Ri .kb0〉, . . . ,
〈Mb

n , Ri .kbn〉), where Mb
j is the projection of M j , obtained by ignoring the places of multi-

robot operators, such as hard and soft synchronizations for the case of a centralized execution,
and of the communication primitives send and receive in the case of distributed execution.

We can prove that a centralized execution by Algorithm 1 of a PNP, in the case of multi-
body planning, and its distributed execution by DEA, produce the same behavioral evolutions.
During the execution of a multi-robot PNP, each robot executes the portions of the plan which
are associated to it, except for h_sync and s_sync operators which require a central operator.

We show that synchronization operators have the same behavioral evolutions when
centralized or distributed, by considering the behavior of the communication primitives
send(R2, id) and receive(R1, id). All the communication primitives of a given decom-
posed operator will have the same id value, which identifies the operator itself.

Thus, if the distributed execution of the synchronization operators, when considering only
their input and output places, has the same behavioral evolution of the centralized execution,
then also the entire PNP has the same behavioral evolution if executed in a distributed or
centralized way. The consequence of this is that, if a PNP is bounded, live or has a home

123

368 Auton Agent Multi-Agent Syst (2011) 23:344–383

state, then also the distributed execution will be bounded, live and have the same homing
state.

Theorem 2 Assuming a reliable communication channel and instantaneous communica-
tion, DEA correctly executes any PNP P when using the multi-robot operators h_sync and
s_sync, i.e. it produces the same behavioral evolution of the centralized execution of P with
the same input.

Proof Since synchronization operators do not involve queries to the knowledge base,
we consider the behavioral evolution ignoring the kb term. In particular, we consider for
both the hard and soft synchronization the marking (Figs. 8, 9):

〈M(pi1), M(pi2), M(po1), M(p02)〉
Hard synchronization. Without loss of generality, consider the h_sync and its distributed
counterpart depicted in Fig. 11a and b. Given that a PNP must be 1-bounded and that the
underlying PN model prescribes at most one transition firing at every step, we have the
following two possible scenarios for the centralized execution, based on the order with which
transitions fire (Fig. 11a):

1. t1, t2: t1 fires producing the marking 〈1, 0, 0, 0〉, t is not enabled and thus no further firing
can occur. Then, t2 fires producing the marking 〈1, 1, 0, 0〉. Now t is enabled an can fire
producing the marking 〈0, 0, 1, 1〉.

2. t2, t1: t2 fires producing the marking 〈0, 1, 0, 0〉, t is not enabled and thus no further firing
can occur. Then, t1 fires producing the marking 〈1, 1, 0, 0〉. Now t is enabled an can fire
producing the marking 〈0, 0, 1, 1〉.

We show that the distributed execution has the same behavioral evolution (Fig. 11b):

1. t1, t2: t1 fires producing the marking 〈1, 0, 0, 0〉. At this point, the send action is instanta-
neously performed on a separate thread and no tokens are produced (notice that the token
in the input place of the send action is not considered in the behavioral evolution because
part of a send operator). The receive action can not fire because it is blocked. Then, t2
fires producing the marking 〈1, 1, 0, 0〉. The send action is instantaneously performed
on a separate thread and no tokens are produced. Now, both receive actions have been
unblocked, and can instantaneously terminate producing the marking 〈0, 0, 1, 1〉.

2. t2, t1: The same applies here, because this case is the symmetric of the previous.

Soft synchronization. Without loss of generality, consider the s_sync and its distributed coun-
terpart depicted in Fig. 12a and b. Given that a PNP must be 1-bounded and that the underlying
PN model prescribes at most one transition firing at every step, we have the following two
possible scenarios for the centralized execution, based on the order with which transitions
fire (Fig. 12a):

1. t1, t2: t1 fires producing the marking 〈1, 0, 0, 0〉, t f is enabled fires producing the mark-
ing 〈0, 0, 1, 0〉 (notice that a token is also placed in pm , which is not considered in the
behavioral evolution because part of an operator). Then, t2 fires producing the marking
〈0, 1, 1, 0〉. Now t j is enabled an can fire producing the marking 〈0, 0, 1, 1〉.

2. t2, t1: t2 fires producing the marking 〈0, 1, 0, 0〉, t j is not enabled and thus no further firing
can occur. Then, t1 fires producing the marking 〈1, 1, 0, 0〉. Now t f is enabled an can fire
producing the marking 〈0, 1, 1, 0〉. Finally, t j fires producing the marking 〈0, 0, 1, 1〉.

We show that the distributed execution has the same behavioral evolution (Fig. 12b):

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 369

1. t1, t2: t1 fires producing the marking 〈1, 0, 0, 0〉 and enables the send action which fires
producing the marking 〈0, 0, 1, 0〉. Then, t2 fires producing the marking 〈0, 1, 1, 0〉. Now,
the receive action is enabled (and unblocked by the previous send action); it thus fires
producing the marking 〈0, 0, 1, 1〉.

2. t2, t1: t2 fires producing the marking 〈0, 1, 0, 0〉, but the receive action is blocked (because
it did not receive the id message) and thus no further firing can occur. Then, t1 fires pro-
ducing the marking 〈1, 1, 0, 0〉. Now, the send action is enabled and can fire producing
the marking 〈0, 1, 1, 0〉. Finally, the receive action, that has been unblocked by the send,
fires producing the marking 〈0, 0, 1, 1〉. ��

6 Collaboration using PNPs

In this section, we describe the use of PNPs to model collaboration in a team of robots.
Collaboration is, in fact, a key feature in the design of a large number of multi-robot applica-
tions. PNPs can be used to achieve a simple form of dynamic task assignment by exploiting
the h_sync operator. Nevertheless, h_sync and s_sync are not enough to model more general
forms of explicit collaboration. To this end, we introduce a new synchronization mechanism,
called joint committed action, that can be used to model explicit forms of collaboration
such as Cohen and Levesque’s Joint Intentions theory [6,51], also allowing for a distributed
execution.

6.1 Task assignment

An example of multi-robot collaboration is given by task assignment, which is the problem
of assigning a set of tasks to a set of robots. Notice that, in multi-robot systems the knowledge
bases Ri .kb and R j .kb of two different robots, due to perceptual errors, may be inconsis-
tent. Thus, it may be impossible to agree on a common description of the current situation.
There are a number of papers which explicitly address task assignment problems for robots
(e.g., Token Passing [16], Market Based [14,60], Reactive Task Assignment [27,55], Iterative
Task Assignment [42] or Sequential Task Assignment [5,13,23]). Among them, we consider
the PNP implementation of a dynamic task assignment approach based on utility functions
[27], which has been demonstrated to be effective on real robots, especially when facing a
dynamic environment. The main idea is that each robot, based on its local knowledge, broad-
casts to its teammates its utility in performing each role. We implement the task assignment
algorithm through an h_sync, where each send action communicates the id of the h_sync and
its own computed utility for the task. The communicated utility allows for sharing knowledge
on the task to be performed. Then, each robot decides, based on the common knowledge of
the utilities, which task it must perform.

Example 3 Consider a task assignment problem with two robots and two roles: two soccer
robots need to perform a pass. Each of the two robots needs to initially decide whether it
should pass or receive the ball. The robot that is closer to the ball is typically required to exe-
cute the pass task, whereas the robot which is far from the ball should execute the receive task.
A PNP that models task assignment in this scenario is shown in Fig. 13. Once the soccer ball
has been successfully located by the two robots (the portion of plan for finding the location
of the ball is not shown in the figure), a h_sync operator is used to synchronize the execution
and to exchange information about each robot’s utility in each of the two roles. This commu-
nication ensures that both robots share the same set of beliefs about their individual utilities.

123

370 Auton Agent Multi-Agent Syst (2011) 23:344–383

Fig. 13 PNP used for task
assignment: a multi-robot plan
and b single-robot plans

(b)

(a)

The task assignment is then consistently performed, in this case, through the evaluation of
the condition closestT oBall. In case Robot1 is the closest to the ball (R1.closestT oBall
is true), the robot will perform a pass task. The pass and receive procedures are encoded in
the remaining branches of the plan, not shown in the figure. The example considers the case
of two robots and two roles, but the task assignment can be extended to the case of a larger
number of robots and roles.

6.2 Joint intentions

Collaboration plays an important role in multi-robot systems, as teamwork can lead to
consistent performance improvements. Cohen and Levesque’s Joint Intentions (JI) the-
ory [6] provides a detailed formal specification for the design of collaborative behaviors. Its
prescriptive approach can be expressed using PNPs, which provide the required level of
expressiveness, while maintaining the desired generality to allow for the design of a wide
range of collaborative tasks. This section briefly summarizes the concepts behind the JI the-
ory, and shows how it is possible to use it to design a PNP for explicit collaboration among
multiple robots.

The Joint Intentions theory isolates a set of basic requirements that the collaborative
behavior should fulfill. The theory is rooted in the concept of commitment: members that are
committed to the execution of a collaborative behavior will continue their individual action
execution until the commitment holds. Communication is used to achieve mutual belief about

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 371

Fig. 14 The joint committed action. Transitions implicitly encode events associated to the change of the
current state of the joint action. When distributed, mutual belief on the current state of the joint actions is
established by sending ids that implicitly encode the state of the system. Individual robots commit to the
execution of a collaborative behavior using an h_sync operator. In case all individual behaviors are success-
fully concluded the collaboration successfully terminates and the robots break their commitment thought a
second h_sync operator. Individual robots are able to determine if the collaboration should be interrupted, and
communicate to achieve mutual belief on the necessity to break their commitment

the necessity of interrupting the collaboration (i.e. breaking the members’ commitment), in
case any member of the team believes one of the following conditions is true:

1. the behavior was successfully concluded,
2. the behavior will never be concluded successfully (it is impossible),
3. the behavior became irrelevant.

The prescriptive approach of the Joint Intentions theory can be used to provide a sys-
tematic design of collaborative behaviors in a multi-robot team. The concepts behind the JI
theory, in fact, can be embodied in the design of multi-robot PNPs for collaborative tasks.
To this end, we define a joint committed action structure, which uses the h_sync operator to
establish commitment and to assess the successful conclusion of the joint action. Moreover,
we introduce a new set of transitions which act as multi-robot interrupts, to consistently inter-
rupt the joint action when it becomes irrelevant or fails. Figure 14 shows the joint committed
action: a multi-robot PNP operator for collaborative behavior, according to the specifications
of the JI theory.

After a first hard synchronization (during which the commitment is established), the two
robots perform the collaborative behavior, executing their individual actions (behavior1 and
behavior2). In our implementations, the behavior1 and behavior2 are sub-plans rather than

123

372 Auton Agent Multi-Agent Syst (2011) 23:344–383

Fig. 15 a Portion of the Joint
Committed Action ignoring
h_sync. b The decomposed PNP
for robot R1

(a)

(b)

single actions. This allows for higher modularity and for avoiding proliferation of multi-robot
interrupts required to monitor all possible configurations of the execution state of parallel
sequences of actions. Following the JI theory, the commitment is broken, if one of the above
listed conditions holds. If one of the engaged robots senses that the action has become
irrelevant or that the action has failed, the multi-robot interrupts ensure that the event is
communicated to the partner, and the execution of the individual actions is interrupted. In the
case of a successful termination of both behavior1 and behavior2, a hard sync is performed
to successfully end the commitment.

The decomposition of a joint committed action amounts to decomposing the h_syncs
and the transitions that act as multi-robot interrupt. The decomposition of the h_sync is
performed as described in the previous section, hence we focus on the decomposition of
the multi-robot interrupt (Fig. 15). Specifically, let us focus on the case when R1 recog-
nizes that the joint committed action fails or becomes irrelevant (Fig. 16). In the centralized
model, this situation is handled by two transitions which break the commitment and move
the robots to some recovery plan. The two transitions are required to handle the two possible
configurations in which the system may be: (1) both robots are executing their actions; (2)

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 373

Fig. 16 Detail on the
decomposition of a Joint
Committed Action

(a)

(b)

(c)

R1 is currently executing its action, while R2 has finished his action. Notice that the two
configurations depend on the state of R2. The decomposition can thus be obtained as follows.
First, we add an instantaneous send action for R1 that acts as an interrupt for behavior1
and that is guarded by the interrupt conditions. The send action when performed interrupts
behavior1 and starts the recovery procedure for R1. Second, we add two receive actions
to R2, one for each possible configuration of R2, which are triggered by the message sent
by R1. Both receive actions, which are mutually exclusive given the topology of the net,
produce a token in the same place, which is the input place of some recovery procedure for
R2. Notice that mutual knowledge is obtained through the communication primitives that
implicitly encode the current state of the joint behavior in the ids. Specifically, ids relative
to h_syncs encode the commitment to a joint action or the achievement of a goal, while ids
of multi-robot interrupts encode failures or the irrelevance of a task.

The semantics of distributed execution described in Sect. 5 is extended to the joint com-
mitted action. As a consequence of Theorem 2 and of the correspondence of the behavioral
evolution of the centralized and the distributed multi-robot interrupt, we can prove that DEA
correctly executes any multi-robot PNP P which includes joint committed actions.

123

374 Auton Agent Multi-Agent Syst (2011) 23:344–383

Theorem 3 DEA correctly executes any PNP P when using joint committed actions, i.e. it
produces the same behavioral evolution of the centralized execution of P with the same input.

Proof The proof of this theorem is similar to the one for Theorem 2. The main difference is
that the joint committed action requires the query of the local kb of a robot in order to iden-
tify the interrupt conditions. Given that the interrupt explicitly requires to specify on which
Knowledge Base the interrupt condition must be verified, we can consider the behavioral
evolution ignoring the kb term:

〈M(pi1), M(pi2), M(pe1), M(pe2), M(po1), M(po2), M(R1.int), M(R2.int)〉.
Given that it has been shown that h_sync preserves behavioral evolutions (Theorem 2),
in order to obtain the proof we discuss the case of the multi-robot interrupt. Specifically,
given that the behavior of the interrupts is symmetrical, we consider the case of multi-robot
interrupts detected on robot R1 (Fig. 16).

Given that a Joint committed always starts with a hard sync, we always begin with a
token in the input place of both actions (i.e., 〈1, 1, 0, 0, 0, 0, 0, 0〉). Moreover, given that the
start of an action, if enabled, is automatically fired by the executor and that the executor’s
cycle time is orders of magnitude faster than any robot action, we assume that, independently
of which actions fires first, the system will instantaneously transition to the marking (i.e.,
〈0, 0, 1, 1, 0, 0, 0, 0〉).

Consider now the multi-robot interrupt (Fig. 16a) and its distributed counterpart (Fig. 16b,
c). For the centralized model, we have the following possible cases (Fig. 16a):

1. te1 fires leading to the marking 〈0, 0, 0, 1, 1, 0, 0, 0〉, then te2 fires leading to the marking
〈0, 0, 0, 0, 1, 1, 0, 0〉.

2. te2 fires leading to the marking 〈0, 0, 1, 0, 0, 1, 0, 0〉, then te1 fires leading to the marking
〈0, 0, 0, 0, 1, 1, 0, 0〉.

3. the condition (R1.failure OR R1.irrelevant) is true and tint1 fires leading to the marking
〈0, 0, 0, 0, 0, 0, 1, 1〉.

4. te2 fires leading to the marking 〈0, 0, 1, 0, 0, 1, 0, 0〉, then the condition (R1.failure OR
R1.irrelevant) is true and tint2 fires leading to the marking 〈0, 0, 0, 0, 0, 0, 1, 1〉.

Let us consider the same situations, in the case of distributed execution (Fig. 16b, c):

1. te1 fires leading to the marking 〈0, 0, 0, 1, 1, 0, 0, 0〉, then te2 fires leading to the marking
〈0, 0, 0, 0, 1, 1, 0, 0〉.

2. te2 fires leading to the marking 〈0, 0, 1, 0, 0, 1, 0, 0〉, then te1 fires leading to the marking
〈0, 0, 0, 0, 1, 1, 0, 0〉.

3. the condition (R1.failure OR R1.irrelevant) becomes true, thus in the local net of R1
the guard of send(R2,id) is true and the send action fires sending the message id to R2.
Simultaneously, the receive action connected to pe2 is enabled and unblocked, thus, it
fires leading to the marking 〈0, 0, 0, 0, 0, 0, 1, 1〉.

4. te2 fires leading to the marking 〈0, 0, 1, 0, 0, 1, 0, 0〉, then the condition (R1.failure OR
R1.irrelevant) becomes true, thus in the local net of R1 the guard of send(R2, id) is
true and the send action fires sending the message id to R2. Simultaneously, the receive
action connected to po2 is enabled and unblocked, thus, it fires leading to the marking
〈0, 0, 0, 0, 0, 0, 1, 1〉. ��
Notice that if we drop the assumption of instantaneous communications and allow some

bounded delay, the system may have some spurious evolutions. Specifically, the distributed

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 375

execution, before reaching the marking 〈0, 0, 0, 0, 0, 0, 1, 1〉, may reach for some bounded
amount of time the markings 〈0, 0, 0, 1, 0, 0, 0, 1〉 or 〈0, 0, 1, 0, 0, 0, 0, 1, 〉. Despite this, the
system will eventually reach the marking 〈0, 0, 0, 0, 0, 0, 1, 1〉.

7 Evaluation

The proposed framework has been implemented and used to control different robotic systems
in different domains. In particular, the implementation includes a plan executor for PNPs and
a set of tools for designing and debugging plans. Plans are executed reacting to the events
occurring in the environment and to the state of the robot.

In this section we first present three case studies showing the capabilities of the proposed
framework and then we show some examples of PNP validation.

7.1 Case studies

Among several applications realized with our PNP framework, we describe experimental
tests implemented on two different robotic platforms: a wheeled robot used for search and
rescue missions and four legged AIBO robots used for robotic soccer. In particular, we
describe three case studies: single-robot exploration and search in unknown environment,
collaborative multi-robot foraging, and robotic soccer ball passing.

Our aim is to highlight the features of PNPs used for representing single-robot and multi-
robot plans needed to accomplish them. The search and rescue activities described in [3]
address the need of complex plan structures, like interrupts and concurrent execution of
complex actions. The case study on multi-robot foraging [16] shows an example of complex
coordination and action synchronization. Finally, the case study on robotic soccer presents
many of the issues related both to coordination and collaboration. The videos showing the
execution of these tasks with the robots are available at: pnp.dis.uniroma1.it.

7.1.1 Exploration and search in an unknown environment

Exploration and search in an unknown environment is an important task for many robotic
applications, related to security and surveillance. The main difficulties arise from the impos-
sibility of specifying all the possible situations that a robot will encounter during a mission.
In this context, we put a special emphasis on the evaluation of different strategies for rescue
robots [3] and we use PNPs to model the different strategies and perform a set of experiments
with real and simulated robots to assess performance of such strategies.

Figure 17 shows the Pioneer 3 AT robot used in these experiments. It is a wheeled robot
with on board sensors and computation. In particular, it uses a laser range finder for navigation
and mapping, and a camera mounted on a pan-tilt unit for object detection and recognition.
We also use a simulated scenario with similar characteristics.

While the description of the exploration strategies, the PNPs and the results of the exper-
iments are detailed reported in [3], in this article we comment on the use of PNPs.

In the plans describing the exploration strategies we need to use all the single-agent PNP
features described in the previous sections. Examples of ordinary actions are:
NavigateAndSearch, NavigateToCandidateVictim and AnalyzeVictim; while sensing actions
like FireFound are used to drive the plan according to some perception. The use of interrupts
is very important, both to model action failures due to the uncertainty in perception and
action execution and to take into account some other task more important to be performed.

123

pnp.dis.uniroma1.it

376 Auton Agent Multi-Agent Syst (2011) 23:344–383

Fig. 17 Rescue robots used for exploration and search tasks

For example, during the execution of the action NavigateAndSearch, that is the basic action
used to move around the environment, if a victim is seen, an interrupt on a condition new-
VictimFound allows the robot to abort the search action and to start navigating towards the
victim. Finally, concurrent actions are used in many situations to drive the robot wheels and
the pan-tilt unit moving the camera independently.

In the above mentioned paper, we analyze four different scenarios and several strategies
implemented with PNPs. PNPs embody all the features needed to model such a complex
domain and the corresponding robot behaviors.

7.1.2 Coordination in robotic foraging

In the second case study, we focus on coordination issues in a multi-robot foraging domain.
Here we show the use of complex coordination for object manipulation, delegating collabo-
rative issues to an external algorithm. While the coordination algorithm, as well as a detailed
description of the experiments, can be found in [16], in this paper, we describe the PNPs
which have been used to coordinate the robots.

The multi-robot foraging test we have considered involves three robots that perform a
synchronized operation on a set of similar objects scattered in the environment (Fig. 18). In
order to collect the objects, it is necessary to be able to synchronize actions across plans.
Each robot can take one of two tasks: collector, that grabs the object (a ball), supporter,
that supports the collector robot during the grabbing phase. An external module is used to
dynamically assign tasks (a collector and a supporter) to the robots. The robots then execute
a multi-robot PNP to jointly grab the objects and collect them in a predefined location in the
environment.

Figure 19 shows the multi-robot plan used for this test. Hard synchronization is used to
synchronize the robots after they reach the corresponding target positions. Then, the collector
robot waits for the supporter one to push the ball below his neck. After that, the collector
robot grabs the ball and the supporter robot moves away. Finally, the collector robot brings
the object in the target area. All these synchronization activities are implemented on the
robots by pairs of communication actions.

7.1.3 Collaboration in robotic soccer

The third case study shows a complete example of using PNPs, addressing both coordination
and collaboration. The goal of the case study is to have two robots passing the ball to each

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 377

Fig. 18 AIBO robots during the foraging task

Fig. 19 The multi-robot PNP for foraging test

other (Fig. 20). We require the resulting behavior to be robust to both action failures and
exogenous events. To this end, we need to model, through PNPs, action synchronization,
dynamic task assignment and teamwork implemented through Joint Intentions theory. Thus,
in contrast with the previous case study, here there is no external module for collaboration.
Indeed, collaboration is accomplished by using the PNP structures described in the previous
sections.

The multi-robot plan (Fig.21) is divided in three phases: (1) task assignment based on the
distance to the ball, (2) preparation to the pass, (3) actual pass behavior.

In the task assignment phase, the robot which is closer to the ball takes the role of the
Passer and the other robot behaves as the Receiver. This is obtained by using the PNP task
assignment mechanism illustrated by Fig. 13. Note that this assignment is dynamic and
depends on the actual position of the ball.

123

378 Auton Agent Multi-Agent Syst (2011) 23:344–383

Fig. 20 AIBO robots during the passing task

Fig. 21 Multi-robot PNP for the pass behavior

After the task assignment phase, the robots are committed to the execution of their tasks
for passing/receiving the ball. The Passer robot moves to reach the ball, grabs it and rotates
towards its partner. In the meantime, the Receiver robot reaches the desired position and
prepares to intercept the passed ball, by rotating towards the Passer. At the end of this phase,
the robots renew their commitment through another synchronization. The h_sync operator
is again used to ensure that both the robots have completed their actions, before they can
proceed with the pass. This preparation phase (Fig. 22) is prone to action failures, due to
the difficulty of implementing reliable grab and rotation primitives with AIBO robots, and
due to possible occurrence of exogenous events (e.g. collisions with other robots), that may
interfere with the predicted performance of the primitives. Reflecting the principles of the
JI theory, the robots break their commitment in case a failure occurs during this phase (in
this particular task the collaborative behavior is never considered irrelevant, as the robots
have the unique task of passing the ball). More specifically, the Lost Ball condition becomes
true, whenever the Passer robot realizes that the ball has been lost during the grab or the
rotation phases. The ball may in fact roll away from the robot, causing the need for a new task
assignment procedure. In case the control of the ball is lost by the Passer robot, the Receiver
robot needs to be notified, in order to break its commitment to the current execution of the
pass. A multi-robot interrupt operator is used to consistently interrupt the execution of the
actions of both the Passer and the Receiver.

In case the preparation phase is successfully completed, the pass can take place. The
Passer robot kicks the ball towards the Receiver, that in the meanwhile performs an intercept
behavior. This phase does not require special attention for action interruption, as the kick and
the intercept behaviors are atomically performed and the pass behavior is concluded both in
case of success and in case of failure of the pass. A further synchronization (through a hard

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 379

Fig. 22 Preparation phase of the pass behavior

sync operator) is performed to exchange information about the outcome of the behavior, and
the commitment is broken.

7.2 Example of PNP validation

Figure 23 shows another possible experimental test, which combines the two previous ones:
a collector robot C collects balls as they arrive, it passes the collected balls to a supporter
robot S, that stores them somewhere. In this richer setting, it is possible to identify several
design features that can be supported by the analysis of PNPs.

Fig. 23 A foraging task with pass behavior and commitment. The PNP in this example is not valid

123

380 Auton Agent Multi-Agent Syst (2011) 23:344–383

– The 2-robot system can recover from commitment loss when the collector C fails, but not
when the supporter S fails. This means that the net is not effective. The problem can be
found through reachability analysis.

– There is a deadlock when the reached marking has a single token in any of the places, after
commitment break on the supporter S subnet, therefore the net is not minimal, and the goal
of continuously collecting balls is not achievable (will be undermined by a commitment
break by S). The problem can be found through liveness analysis.

– If we replace the current h_sync with a s_sync, assuming the collector C will throw the ball
to wherever the supporter S is, whenever C grabs a ball, another unbounded place would
show up at the new s_sync place, meaning that the collector performs its task faster than
the supporter, an undesirable feature. Thus the net is not safe. The problem can be found
using coverability trees.

As this example shows, PN analysis tools can be used to study several features of PNPs.
In general, these features may not only be limited to safeness, effectiveness and minimality
as presented in Sect. 3.3. Moreover, we recall that once we verify that some properties hold
for the centralized PNP, we also know that they will hold for the distributed version as a
consequence of the fact that multi-robot operators preserve behavioral evolutions.

8 Conclusions

In this article, we have presented a new formalism, called PNPs, for high level programming
of multi-robot systems. PNPs provide for a methodological and systematical approach for
developing robotic behaviors through PNs, which allows for modeling many application-
critical features such as: complex actions, concurrency and multi-robot coordination and
collaboration. Moreover, PNPs implement a rich set of capabilities to support: (1) behavior
design; (2) distributed execution; and (3) analysis and validation of the resulting behaviors.
Our experience suggests that these features are very often required in the development of
robotic systems, yet they can not be found in competing approaches.

PNPs are the result of the large body of experience in building multi-robot plans in a variety
of domains, including robot soccer and disaster response robotics. The expressive power of
PNPs provides suitable means to deal with most of the situations encountered, when design-
ing autonomous robots and multi-robot systems. An implementation of the PNP executor,
used in the case studies presented in this paper, is available as an open-source software. Addi-
tionally, PNPs can be supported by a wide range of PN tools that can ease the design and
debug of PNPs through graphical interfaces and validate plans through automated analysis.

Although PNPs are the result of a decade of experience in designing multi-robot systems,
there are still interesting developments in our research agenda. On the one hand, we need
better ways to deal with the symbol grounding problem to establish a proper connection
between low-level code and symbols in the plan representation framework: not only do we
need to consider environment properties related to sensing actions and knowledge base pred-
icates, but also we need better tools to define the action primitives and their counterpart in
the low-level implementation. On the other hand, although PNPs are defined largely using
notions from action theories, we aim at establishing a precise correspondence between PNPs
and action theories as in the CONGOLOG language. In this way, the approach could also
benefit from reasoning about actions as an additional tool to establish properties about states
based upon the action representation. To this end, it is worth noticing that the combination of

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 381

constructs that is provided by PNPs is richer than the CONGOLOG language; for example,
the inclusion of interrupts and commitments deserve further investigation.

Finally, another line of research could address the automatic generation or synthesis of
PNPs. In this respect, it is possible to identify sublanguages of PNPs, with the goal of applying
plan generation techniques to obtain PNPs from action representations, or to apply learning
techniques (e.g., genetic programming or reinforcement learning) for refining or generating
plans by experiments and user training.

References

1. Akharware, N. (2005). Pipe2: Platform independent petri net editor. M.Sc. thesis, Imperial College
of Science, Technology and Medicine, University of London, London, UK.

2. Calisi, D., Censi, A., Iocchi, L., & Nardi, D. (2008, September). OpenRDK: a modular framework
for robotic software development. In Proceedings of international conference on intelligent robots
and systems (IROS), pp. 1872–1877.

3. Calisi, D., Farinelli, A., Iocchi, L., & Nardi, D. (2007) Multi-objective exploration and search for
autonomous rescue robots. Journal of Field Robotics, Special Issue on Quantitative Performance
Evaluation of Robotic and Intelligent Systems, 24, 763–777.

4. Celaya, J. R., Desrochers, A. A., & Graves, R. J. (2007). Modeling and analysis of multi-agent
systems using petri nets. In IEEE international conference on systems, man and cybernetics (ISIC),
pp. 1439–1444.

5. Chaimowicz, L., Campos, M. F. M., & Kumar, V. (2002, May). Dynamic role assignment for coop-
erative robots. In Proceedings of the 2002 IEEE international conference on robotics and automation
(ICRA02), pp. 292–298, Washington, DC

6. Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Special Issue on Cognitive Science and Artificial
Intelligence, 25, 486–512.

7. Coradeschi, S., & Saffiotti, A. (2003). An introduction to the anchoring problem. Robotics and
Autonomous Systems, 43(2–3), 85–96.

8. Cost, R. S., Chen, Y., Finin, T., Labrou, Y. K., & Peng, Y. (2000). Using colored petri nets for
conversation modeling, Vol. 1916 of Lecture Notes in AI (pp. 178–192). Berlin: Springer.

9. Costelha, H., & Lima, P. (2007). Modelling, analysis and execution of robotic tasks using petri nets. In
IEEE/RSJ international conference on Intelligent robots and systems (IROS), pp. 1449–1454, October
29–November 2, 2007.

10. De Giacomo, G., Iocchi, L., Nardi, D., & Rosati, R. (1997). Planning with sensing for a mobile
robot. In Proceedings of 4th European conference on planning (ECP’97).

11. De Giacomo, G., Lespérance, Y., & Levesque, H. J. (2000). Congolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence, 121(1–2), 109–169.

12. de Silva, L., Sardina S., & Padgham, L. (2009). First principles planning in bdi systems. In AAMAS
’09: Proceedings of the 8th international conference on Autonomous agents and multiagent systems,
pp. 1105–1112. International Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 2009.

13. Dias, M. B., & Stentz, A. T. (2001, August). A market approach to multirobot coordination. Technical
Report CMU-RI-TR-01-26, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

14. Dias, M. D., & Stentz, A. (2002, September) Opportunistic optimization for market-based multirobot
control. In 2002 IEEE/RSJ international conference on Intelligent robots and systems (IROS’02),
pp. 2714–2720.

15. Durfee, E. H. (1999). Distributed problem solving and planning. In G. Weiss (Ed.), Multiagent systems:
A modern approach to distributed artificial intelligence (pp. 121–164). Cambridge: MIT Press.

16. Farinelli, A., Iocchi, L., Nardi, D., & Ziparo, V. A. (2006). Assignment of dynamically perceived
tasks by token passing in multi-robot systems. Proceedings of the IEEE, Special issue on multi-robot
systems, 94(7), 1271–1288. ISSN:0018-9219.

17. Ferber, J. (1999). Multi-agent systems. Boston: Addison-Wesley.
18. Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem proving to

problem solving. Artificial Intelligence, 2, 189–208.
19. Firby, R. J. (1989). Adaptive execution in complex dynamic worlds. PhD thesis, Yale.

123

382 Auton Agent Multi-Agent Syst (2011) 23:344–383

20. Gat, E. (1992). Integrating planning and reacting in a heterogeneous asynchronous architecture for
controlling real-world mobile robots. In Proceedings of the tenth national conference on artificial
intelligence, pp. 809–815.

21. Gat, E. (1997, February). ESL: A language for supporting robust plan execution in embedded
autonomous agents. In Proceedings of the IEEE aerospace conference (Vol. 1, pp. 319–324). Aspen,
CO: Snowmass.

22. Georgeff, M. P., & Lansky, A. L. (1986). Procedural knowledge. In Proceedings of the IEEE special
issue on knowledge representation, Vol. 74, pp. 1383–1398.

23. Gerkey, B., & Matarić, M. J. (2000, December). Principled communication for dynamic multi-robot
task allocation. In Proceedings of the international symposium on experimental robotics, pp. 353–362,
Waikiki, Hawaii.

24. Giordano, V., Ballal, P., Lewis, F., Turchiano, B., & Zhang, J. B. (2006). Supervisory control of
mobile sensor networks: Math formulation, simulation, and implementation. IEEE Transactions on
Systems, Man and Cybernetics—Part B: Cybernetics, 36(4), 554–562.

25. Gutnik, G., & Kaminka, G. A. (2006). Representing conversations for scalable overhearing. Journal
of Artificial Intelligence Research, 25(1), 349–387.

26. Herrero-Perez, D., & Martinez-Barbera, H. (2010). Modeling distributed transportation systems com-
posed of flexible automated guided vehicles in flexible manufacturing systems. IEEE Transactions
on Industrial Informatics, 6(2), 166–180.

27. Iocchi, L., Nardi, D., Piaggio, M., & Sgorbissa, A. (2003). Distributed coordination in heterogeneous
multi-robot systems. Autonomous Robots, 15(2), 155–168.

28. Kaminka, G. A., & Frenkel, I. (2005). Flexible teamwork in behavior-based robots. In AAAI,
pp. 108–113.

29. King, J., Pretty, R. K., & Gosine, R. G. (2003). Coordinated execution of tasks in a multiagent
environment. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 33(5), 615–619.

30. Kobt, Y. T., Beauchemin, S. S., & Barron, J. L. (2007). Petri net-based cooperation in multi-agent
systems. In Proceedings of 4th Canadian conference on computer and robot vision, 2007

31. Konolige, K. (1997). COLBERT: A language for reactive control in Saphira. Lecture Notes in Computer
Science, 1303, 31–50.

32. Konolige, K., Myers, K. L., Ruspini, E. H., & Saffiotti, A. (1997). The Saphira architecture: A design
for autonomy. Journal of Experimental and Theoretical Artificial Intelligence, 9(1), 215–235.

33. Kontes, G., & Lagoudakis, M. G. (2007). Coordinated team play in the four-legged robocup
league. In Proceedings of IEEE international conference on Tools with artificial intelligence (ICTAI),
Vol. 1, pp. 109–116.

34. Kress-Gazit, H., Fainekos, G. E., & Pappa, G. J. (2009). Temporal logic-based reactive mission and
motion planning. IEEE Transactions on Robotics, 25(6), 1370–1381.

35. Kuo, C.-H., & Lin, I.-H. (2006). Modeling and control of autonomous soccer robots using distributed
agent oriented petri nets. In IEEE international conference on Systems, man and cybernetics (SMC
apos), Vol. 5, pp. 4090–4095.

36. Loetzsch, M., Risler, M., & Jungel, M. (2006). Xabsl—A pragmatic approach to behavior engineering.
In IEEE/RSJ international conference on Intelligent robots and systems, 2006, pp. 5124–5129.

37. Lima, D., & Milutinovic, P. (2002). Petri net models of robotic tasks. In IEEE international conference
on Robotics and Automation (ICRA’02).

38. Maier, C., & Moldt, D. (2001). Object coloured petri nets—A formal technique for object oriented
modelling. Concurrent object-oriented programming and petri nets: Advances in petri nets, pp.
406–427.

39. McCarthy, J., & Hayes, P. (1969). Some philisophical problems from the standpoint of artificial
intelligence. Machine Intelligence, 4, 463–502.

40. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4),
541–580.

41. Palamara, P. F., Ziparo, V. A., Iocchi, L., Nardi, D., Lima, P., & Costelha, H. (2008). A robotic
soccer passing task using petri net plans (demo paper). In D. Parkes, J. P. Müller, L. Padgham, & S.
Parsons (Eds.), Proceedings of 7th international conference on Autonomous agents and multiagent
systems (AAMAS 2008) (pp. 1711–1712). Estoril, Portugal: IFAAMAS Press.

42. Parker, L. E. (1998). ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automation, 14(2), 220–240.

43. Poutakidis, D., Padgham, L., & Winikoff, M. (1998). Debugging Multi-agent systems using design
artifacts: The case of interaction protocols. In Proceedings of 1998 IEEE international conference on
Systems, man and cybernetics, San Diego, USA.

123

Auton Agent Multi-Agent Syst (2011) 23:344–383 383

44. Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. In J. Allen,
R. Fikes, & E. Sandewall (Eds.), Proceedings of the second international conference on Principles
of knowledge representation and reasoning. San Mateo: Morgan Kaufmann.

45. Reiter, R. (2001). Knowledge in action: Logical foundations for describing and implementing dynamical
systems. Cambridge: MIT Press.

46. Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Singa-
pore: Pearson Education.

47. Scherl, R., & Levesque, H. J. (1993). The frame problem and knowledge producing actions.
In Proceedings of the 11th national conference on Artificial intelligence (AAAI’93), pp. 689–695.

48. Sheng, W., & Yang, Q. (2005, July 24–28). Peer-to-peer multi-robot coordination algorithms: Petri net
based analysis and design. In Proceedings, 2005 IEEE/ASME international conference on Advanced
intelligent mechatronics, pp. 1407–1412.

49. Simmons, R., & Apfelbaum, D. (1998, October). A task description language for robot control.
In Proceedings of IEEE/RSJ international conference on Intelligent robots and systems (IROS),
Vol. 3, pp. 1931–1937. Victoria, BC, Canada.

50. Sudeikat, J., Braubach, L., Pokahr, A., & Lamersdorf, W. (2006). Validation of bdi agents. In R.
Bordini, M. Dastani, J. Dix, & A. El Fallah Seghrouchni (Eds.), The 4th international workshop on
Programming multiagent systems (PROMAS-2006) (pp. 185–200). Berlin: Springer.

51. Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research, 7, 83–124.
52. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics (Intelligent robotics and autonomous

agents). Cambridge: The MIT Press.
53. Vishwanadham, N., & Narahari, Y. (1992). Performance modelling of automated manufacturing

systems. New Delhi: Prentice Hall.
54. Wang, F. Y., Kyriakopoulos, K. J., Tsolkas, A., & Saridis, G. N. (1993). A petri-net coordination

model for an intelligent mobile robot. IEEE Transactions on Robotics and Automation, 9(3), 257–271.
55. Werger, B. B., & Mataric, M. J. (2000). Broadcast of local eligibility for multi-target observation.

In DARS00, pp. 347–356.
56. Xu, D., Volz, R., Ioerger, T., & Yen, J. (2002). Modeling and verifying multi-agent behaviors using

predicate/transition nets. In SEKE ’02: Proceedings of the 14th international conference on Software
engineering and knowledge engineering (pp. 193–200), New York, NY: ACM.

57. Zimmermann, A., & Freiheit, J. (1998). TimeNETMS-an integrated modeling and performance eval-
uation tool for manufacturing systems. In Proceedings of 1998 IEEE international conference on
Systems, man and cybernetics. San Diego, USA.

58. Ziparo, V. A., & Iocchi, L. (2006). Petri net plans. In Proceedings of fourth international workshop
on modeling of objects, components, and agents (MOCA), pp. 267–290, Turku, Finland. Bericht 272,
FBI-HH-B-272/06.

59. Ziparo, V. A., Iocchi, L., Nardi, D., Palamara, P. F., & Costelha, H. (2008). Petri net plans: a formal
model for representation and execution of multi-robot plans. In AAMAS ’08: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems (pp. 79–86). Richland,
SC: International Foundation for Autonomous Agents and Multiagent Systems.

60. Zlot, R., Stenz, A., Dias, M. B., & Thayer, S. (2002). Multi robot exploration controlled by a market
economy. In IEEE international conference on robotics and automation (ICRA’02), pp. 3016–3023.

123

	Petri Net Plans
	A framework for collaboration and coordination in multi-robot systems
	Abstract
	1 Introduction
	2 Related work
	2.1 FSA-based approaches
	2.2 Belief, Desire, Intention
	2.3 PN-based approaches
	2.4 Comparison with PNPs

	3 Petri Net Plans syntax
	3.1 PNP structures
	3.2 PNP Language
	3.2.1 Actions
	3.2.2 Operators

	3.3 PNP definition
	3.4 Sub-plans
	3.5 Robotic soccer example

	4 Petri Net Plans execution
	4.1 Abstract robot architecture
	4.2 PNP execution algorithm

	5 Coordination using PNPs
	5.1 Synchronization operators
	5.2 Distributed execution

	6 Collaboration using PNPs
	6.1 Task assignment
	6.2 Joint intentions

	7 Evaluation
	7.1 Case studies
	7.1.1 Exploration and search in an unknown environment
	7.1.2 Coordination in robotic foraging
	7.1.3 Collaboration in robotic soccer

	7.2 Example of PNP validation

	8 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

