107 research outputs found

    Correlative intravital imaging of cGMP signals and vasodilation in mice

    Get PDF
    Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism

    Ischaemic heart disease in women: are there sex differences in pathophysiology and risk factors?: Position Paper from the Working Group on Coronary Pathophysiology and Microcirculation of the European Society of Cardiology

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in women, and knowledge of the clinical consequences of atherosclerosis and CVD in women has grown tremendously over the past 20 years. Research efforts have increased and many reports on various aspects of ischaemic heart disease (IHD) in women have been published highlighting sex differences in pathophysiology, presentation, and treatment of IHD. Data, however, remain limited. A description of the state of the science, with recognition of the shortcomings of current data, is necessary to guide future research and move the field forward. In this report, we identify gaps in existing literature and make recommendations for future research. Women largely share similar cardiovascular risk factors for IHD with men; however, women with suspected or confirmed IHD have less coronary atherosclerosis than men, even though they are older and have more cardiovascular risk factors than men. Coronary endothelial dysfunction and microvascular disease have been proposed as important determinants in the aetiology and prognosis of IHD in women, but research is limited on whether sex differences in these mechanisms truly exist. Differences in the epidemiology of IHD between women and men remain largely unexplained, as we are still unable to explain why women are protected towards IHD until older age compared with men. Eventually, a better understanding of these processes and mechanisms may improve the prevention and the clinical management of IHD in wome

    An assessment of rates and covariates of mpox diagnosis and vaccination provides evidence to refine eligibility criteria for mpox vaccination among gay, bisexual and other men who have sex with men in the Netherlands

    Full text link
    Background: The 2022 multicountry mpox outbreaks predominantly affected gay, bisexual and other men who have sex with men (GBMSM) in non-endemic countries. Mpox vaccination is most effective if targeting GBMSM most at risk. It is unknown to what extent eligibility criteria for vaccination align with evidence on risk factors for mpox in GBMSM. Methods: We conducted an online self-report survey among GBMSM in the Netherlands between 29 July and 30 August 30, 2022, corresponding to the first month of the Dutch mpox vaccination campaign. GBMSM were recruited via advertisements on social media and gay dating apps. Participants reported on their sexual behaviour, mpox diagnosis, and/or vaccination since the start of the outbreak. Results: Of the 2,460 participants, 73 (3.0%) were diagnosed with mpox and 485 (19.7%) had been vaccinated. Using population sample weights, we estimated that, of the sexually active GBMSM population aged 18-80 years in the Netherlands, 1.1% had been diagnosed with mpox and 7.8% had been vaccinated. In multivariable logistic regression analyses, we found that current HIV-PrEP use, having 20 sex partners in the past 12 months and having sex in sex venues or at parties in the past two months were independent risk factors for mpox diagnosis. Conclusion: This study provides novel evidence on risk factors for mpox amongst GBMSM in the Netherlands that has guided a refinement of eligibility criteria for mpox vaccination. The dynamics of any future mpox outbreaks are unknown and continued adjustment of vaccination eligibility may be required to achieve sustained elimination

    A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings

    Get PDF
    Obstructive disease of the large coronary arteries is the prominent cause for angina pectoris. However, angina may also occur in the absence of significant coronary atherosclerosis or coronary artery spasm, especially in women. Myocardial ischaemia in these patients is often associated with abnormalities of the coronary microcirculation and may thus represent a manifestation of coronary microvascular disease (CMD). Elucidation of the role of the microvasculature in the genesis of myocardial ischaemia and cardiac damage—in the presence or absence of obstructive coronary atherosclerosis—will certainly result in more rational diagnostic and therapeutic interventions for patients with ischaemic heart disease. Specifically targeted research based on improved assessment modalities is needed to improve the diagnosis of CMD and to translate current molecular, cellular, and physiological knowledge into new therapeutic option

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Restoring a Critical Element in Renin-Producing Cells

    No full text
    • …
    corecore