105 research outputs found

    Field effect transistors for terahertz detection - silicon versus III–V material issue

    Get PDF
    International audienceResonant frequencies of the two-dimensional plasma in FETs reach the THz range for nanometer transistor channels. Non-linear properties of the electron plasma are responsible for detection of THz radiation with FETs. Resonant excitation of plasma waves with sub-THz and THz radiation was demonstrated for short gate transistors at cryogenic temperatures. At room temperature, plasma oscillations are usually over-damped, but the FETs can still operate as efficient broadband THz detectors. The paper presents the main theoretical and experimental results on detection with FETs stressing their possible THz imaging applications. We discuss advantages and disadvantages of application of III-V GaAs and GaN HEMTs and silicon MOSFETs

    Exploring light dark matter with the DarkSPHERE spherical proportional counter electroformed underground at the Boulby Underground Laboratory

    Full text link
    We present the conceptual design and the physics potential of DarkSPHERE, a proposed 3 m in diameter spherical proportional counter electroformed underground at the Boulby Underground Laboratory. This effort builds on the R&D performed and experience acquired by the NEWS-G Collaboration. DarkSPHERE is primarily designed to search for nuclear recoils from light dark matter in the 0.05--10 GeV mass range. Electroforming the spherical shell and the implementation of a shield based on pure water ensures a background level below 0.01 dru. These, combined with the proposed helium-isobutane gas mixture, will provide sensitivity to the spin-independent nucleon cross-section of 2×10−41(2×10−43)2\times 10^{-41} (2\times 10^{-43}) cm2^2 for a dark matter mass of 0.1(1)0.1 (1) GeV. The use of a hydrogen-rich gas mixture with a natural abundance of 13^{13}C provides sensitivity to spin-dependent nucleon cross-sections more than two orders of magnitude below existing constraints for dark matter lighter than 1 GeV. The characteristics of the detector also make it suitable for searches of other dark matter signatures, including scattering of MeV-scale dark matter with electrons, and super-heavy dark matter with masses around the Planck scale that leave extended ionisation tracks in the detector.Comment: 19 pages, 14 figure

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described

    ModÚles ecologiques pour l'extrapolation des effets écotoxicologiques enregistrés lors de biotests in situ cheZ Gammarus

    Get PDF
    [Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCAInternational audienceEvaluating the effects of chemical contamination on populations and ecological communities still constitutes a challenging necessity in environmental management. However the toxic effects of contaminants are commonly measured by means of organism-level responses. Linking such effects measures with ecological models is a promising way to apprehend population-level impacts. In this way, population models are currently increasingly used in predictive risk assessment procedures, but their use in environmental diagnostic framework remains limited due to their lack of ecological realism. The present study with the crustacean amphipod Gammarus fossarum, a sentinel species in freshwater monitoring, combines a dual field and laboratory experimental approach with a population modelling framework. In this way, we developed an ecologically-relevant periodic matrix population model for Gammarus. This model allowed us to capture the population dynamics in the field, and to understand the particular pattern of demographic sensitivities induced by Gammarus life-history phenology. The model we developed provided a robust population-level assessment of in situ-based effects measures recorded during a biomonitoring program on a French watershed impacted by past mining activities. Thus, our study illustrates the potential of population modelling when seeking to decipher the role of environmental toxic contamination in ecological perturbations
    • 

    corecore